CoFED: Cross-silo Heterogeneous Federated Multi-task Learning via
Co-training
- URL: http://arxiv.org/abs/2202.08603v1
- Date: Thu, 17 Feb 2022 11:34:20 GMT
- Title: CoFED: Cross-silo Heterogeneous Federated Multi-task Learning via
Co-training
- Authors: Xingjian Cao, Zonghang Li, Hongfang Yu, Gang Sun
- Abstract summary: Federated Learning (FL) is a machine learning technique that enables participants to train high-quality models collaboratively without exchanging their private data.
We propose a communication-efficient FL scheme, CoFED, based on pseudo-labeling unlabeled data like co-training.
Experimental results show that CoFED achieves better performance with a lower communication cost.
- Score: 11.198612582299813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a machine learning technique that enables
participants to train high-quality models collaboratively without exchanging
their private data. Participants in cross-silo FL settings are independent
organizations with different task needs, and they are concerned not only with
data privacy, but also with training independently their unique models due to
intellectual property. Most existing FL schemes are incapability for the above
scenarios. In this paper, we propose a communication-efficient FL scheme,
CoFED, based on pseudo-labeling unlabeled data like co-training. To the best of
our knowledge, it is the first FL scheme compatible with heterogeneous tasks,
heterogeneous models, and heterogeneous training algorithms simultaneously.
Experimental results show that CoFED achieves better performance with a lower
communication cost. Especially for the non-IID settings and heterogeneous
models, the proposed method improves the performance by 35%.
Related papers
- FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - Balancing Similarity and Complementarity for Federated Learning [91.65503655796603]
Federated Learning (FL) is increasingly important in mobile and IoT systems.
One key challenge in FL is managing statistical heterogeneity, such as non-i.i.d. data.
We introduce a novel framework, textttFedSaC, which balances similarity and complementarity in FL cooperation.
arXiv Detail & Related papers (2024-05-16T08:16:19Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Fed-CO2: Cooperation of Online and Offline Models for Severe Data
Heterogeneity in Federated Learning [14.914477928398133]
Federated Learning (FL) has emerged as a promising distributed learning paradigm.
The effectiveness of FL is highly dependent on the quality of the data that is being used for training.
We propose Fed-CO$_2$, a universal FL framework that handles both label distribution skew and feature skew.
arXiv Detail & Related papers (2023-12-21T15:12:12Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - UNIDEAL: Curriculum Knowledge Distillation Federated Learning [17.817181326740698]
Federated Learning (FL) has emerged as a promising approach to enable collaborative learning among multiple clients.
In this paper, we present UNI, a novel FL algorithm specifically designed to tackle the challenges of cross-domain scenarios.
Our results demonstrate that UNI achieves superior performance in terms of both model accuracy and communication efficiency.
arXiv Detail & Related papers (2023-09-16T11:30:29Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
Federated learning (FL) enables distributed participants to collectively learn a strong global model without sacrificing their individual data privacy.
We introduce FedH2L, which is agnostic to both the model architecture and robust to different data distributions across participants.
In contrast to approaches sharing parameters or gradients, FedH2L relies on mutual distillation, exchanging only posteriors on a shared seed set between participants in a decentralized manner.
arXiv Detail & Related papers (2021-01-27T10:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.