Improving Rating and Relevance with Point-of-Interest Recommender System
- URL: http://arxiv.org/abs/2202.08751v1
- Date: Thu, 17 Feb 2022 16:43:17 GMT
- Title: Improving Rating and Relevance with Point-of-Interest Recommender System
- Authors: Syed Raza Bashir, Vojislav Misic
- Abstract summary: We develop a deep neural network architecture to model query-item relevance in the presence of both collaborative and content information.
The application of these learned representations to a large-scale dataset resulted in significant improvements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recommendation of points of interest (POIs) is essential in
location-based social networks. It makes it easier for users and locations to
share information. Recently, researchers tend to recommend POIs by treating
them as large-scale retrieval systems that require a large amount of training
data representing query-item relevance. However, gathering user feedback in
retrieval systems is an expensive task. Existing POI recommender systems make
recommendations based on user and item (location) interactions solely. However,
there are numerous sources of feedback to consider. For example, when the user
visits a POI, what is the POI is about and such. Integrating all these
different types of feedback is essential when developing a POI recommender. In
this paper, we propose using user and item information and auxiliary
information to improve the recommendation modelling in a retrieval system. We
develop a deep neural network architecture to model query-item relevance in the
presence of both collaborative and content information. We also improve the
quality of the learned representations of queries and items by including the
contextual information from the user feedback data. The application of these
learned representations to a large-scale dataset resulted in significant
improvements.
Related papers
- Dissertation: On the Theoretical Foundation of Model Comparison and Evaluation for Recommender System [4.76281731053599]
Recommender systems utilize users' historical data to infer customer interests and provide personalized recommendations.
Collaborative filtering is one family of recommendation algorithms that uses ratings from multiple users to predict missing ratings.
Recommender systems can be more complex and incorporate auxiliary data such as content-based attributes, user interactions, and contextual information.
arXiv Detail & Related papers (2024-11-04T06:31:52Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Bayes-enhanced Multi-view Attention Networks for Robust POI
Recommendation [81.4999547454189]
Existing works assume the available POI check-ins reported by users are the ground-truth depiction of user behaviors.
In real application scenarios, the check-in data can be rather unreliable due to both subjective and objective causes.
We propose a Bayes-enhanced Multi-view Attention Network to address the uncertainty factors of the user check-ins.
arXiv Detail & Related papers (2023-11-01T12:47:38Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - A Systematic Analysis on the Impact of Contextual Information on
Point-of-Interest Recommendation [6.346772579930929]
We propose different contextual models and analyze the fusion of different major contextual information in POI recommendation.
Our results indicate that while modeling geographical and temporal influences can improve recommendation quality, fusing all other contextual information into a recommendation model is not always the best strategy.
arXiv Detail & Related papers (2022-01-20T12:41:12Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - Reciprocal Recommender Systems: Analysis of State-of-Art Literature,
Challenges and Opportunities towards Social Recommendation [14.944946561487535]
Reciprocal Recommender System (RRS) is a data-driven personalized decision support tool.
RRS processes user-related data, filtering and recommending items based on the users preferences, needs and/or behaviour.
This paper summarizes the state-of-the-art RRS research to date, focusing on the algorithms, fusion processes and fundamental characteristics of RRS.
arXiv Detail & Related papers (2020-07-17T09:48:46Z) - A Survey on Conversational Recommender Systems [11.319431345375751]
Conversational recommender systems (CRS) take a different approach and support a richer set of interactions.
The interest in CRS has significantly increased in the past few years.
This development is mainly due to the significant progress in the area of natural language processing.
arXiv Detail & Related papers (2020-04-01T18:00:47Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z) - Relation Embedding for Personalised POI Recommendation [34.043989803855844]
We propose a translation-based embedding for POI recommendation.
Our approach encodes the temporal and semantic contents effectively in a low-temporal relation space.
A combined factorization framework is built on a user-POI graph to enhance the inference of dynamic personal interests.
arXiv Detail & Related papers (2020-02-09T22:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.