Why Not Together? A Multiple-Round Recommender System for Queries and Items
- URL: http://arxiv.org/abs/2412.10787v1
- Date: Sat, 14 Dec 2024 10:49:00 GMT
- Title: Why Not Together? A Multiple-Round Recommender System for Queries and Items
- Authors: Jiarui Jin, Xianyu Chen, Weinan Zhang, Yong Yu, Jun Wang,
- Abstract summary: A fundamental technique of recommender systems involves modeling user preferences, where queries and items are widely used as symbolic representations of user interests.
We propose a novel approach named Multiple-round Auto Guess-and-Update System (MAGUS) that capitalizes on the synergies between both types.
- Score: 37.709748983831034
- License:
- Abstract: A fundamental technique of recommender systems involves modeling user preferences, where queries and items are widely used as symbolic representations of user interests. Queries delineate user needs at an abstract level, providing a high-level description, whereas items operate on a more specific and concrete level, representing the granular facets of user preference. While practical, both query and item recommendations encounter the challenge of sparse user feedback. To this end, we propose a novel approach named Multiple-round Auto Guess-and-Update System (MAGUS) that capitalizes on the synergies between both types, allowing us to leverage both query and item information to form user interests. This integrated system introduces a recursive framework that could be applied to any recommendation method to exploit queries and items in historical interactions and to provide recommendations for both queries and items in each interaction round. Empirical results from testing 12 different recommendation methods demonstrate that integrating queries into item recommendations via MAGUS significantly enhances the efficiency, with which users can identify their preferred items during multiple-round interactions.
Related papers
- Counterfactual Learning-Driven Representation Disentanglement for Search-Enhanced Recommendation [19.76299850698492]
We propose a Counterfactual learning-driven representation disentanglement framework for search-enhanced recommendation.
We leverage search queries to construct counterfactual signals to disentangle item representations, isolating only query-independent general features.
Experiments on real datasets demonstrate ClardRec is effective in both collaborative filtering and sequential recommendation scenarios.
arXiv Detail & Related papers (2024-11-14T09:51:50Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - FineRec:Exploring Fine-grained Sequential Recommendation [28.27273649170967]
We propose a novel framework that explores the attribute-opinion pairs of reviews to finely handle sequential recommendation.
For each attribute, a unique attribute-specific user-opinion-item graph is created, where corresponding opinions serve as the edges linking heterogeneous user and item nodes.
We present an interaction-driven fusion mechanism to integrate attribute-specific user/item representations across all attributes for generating recommendations.
arXiv Detail & Related papers (2024-04-19T16:04:26Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Modeling Multiple User Interests using Hierarchical Knowledge for
Conversational Recommender System [13.545276171601769]
A conversational recommender system (CRS) is a practical application for item recommendation through natural language conversation.
We propose to model such multiple user interests in CRS.
We investigated its effects in experiments using the ReDial dataset and found that the proposed method can recommend a wider variety of items than that of the baseline CR-Walker.
arXiv Detail & Related papers (2023-03-01T08:15:48Z) - Hierarchical Conversational Preference Elicitation with Bandit Feedback [36.507341041113825]
We formulate a new conversational bandit problem that allows the recommender system to choose either a key-term or an item to recommend at each round.
We conduct a survey and analyze a real-world dataset to find that, unlike assumptions made in prior works, key-term rewards are mainly affected by rewards of representative items.
We propose two bandit algorithms, Hier-UCB and Hier-LinUCB, that leverage this observed relationship and the hierarchical structure between key-terms and items.
arXiv Detail & Related papers (2022-09-06T05:35:24Z) - Everyone's Preference Changes Differently: Weighted Multi-Interest
Retrieval Model [18.109035867113217]
Multi-Interest Preference (MIP) model is an approach that produces multi-interest for users by using the user's sequential engagement more effectively.
Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-14T04:29:54Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.