Combining Varied Learners for Binary Classification using Stacked
Generalization
- URL: http://arxiv.org/abs/2202.08910v1
- Date: Thu, 17 Feb 2022 21:47:52 GMT
- Title: Combining Varied Learners for Binary Classification using Stacked
Generalization
- Authors: Sruthi Nair, Abhishek Gupta, Raunak Joshi, Vidya Chitre
- Abstract summary: This paper performs binary classification using Stacked Generalization on high dimensional Polycystic Ovary Syndrome dataset.
The various metrics are given in this paper that also point out a subtle transgression found with Receiver Operating Characteristic Curve that was proved to be incorrect.
- Score: 3.1871776847712523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Machine Learning has various learning algorithms that are better in some
or the other aspect when compared with each other but a common error that all
algorithms will suffer from is training data with very high dimensional feature
set. This usually ends up algorithms into generalization error that deplete the
performance. This can be solved using an Ensemble Learning method known as
Stacking commonly termed as Stacked Generalization. In this paper we perform
binary classification using Stacked Generalization on high dimensional
Polycystic Ovary Syndrome dataset and prove the point that model becomes
generalized and metrics improve significantly. The various metrics are given in
this paper that also point out a subtle transgression found with Receiver
Operating Characteristic Curve that was proved to be incorrect.
Related papers
- An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
In particular, we seek to understand the behaviour of the em generalization error of iterative SSL algorithms using information-theoretic principles.
Our theoretical results suggest that when the class conditional variances are not too large, the upper bound on the generalization error decreases monotonically with the number of iterations, but quickly saturates.
arXiv Detail & Related papers (2021-10-03T05:38:49Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
We show that Adam can converge to different solutions of the objective with provably different errors, even with weight decay globalization.
We show that if convex, and the weight decay regularization is employed, any optimization algorithms including Adam will converge to the same solution.
arXiv Detail & Related papers (2021-08-25T17:58:21Z) - Regularized Classification-Aware Quantization [39.04839665081476]
We present a class of algorithms that learn distributed quantization schemes for binary classification tasks.
Our method is called Regularized Classification-Aware Quantization.
arXiv Detail & Related papers (2021-07-12T21:27:48Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Generalized Negative Correlation Learning for Deep Ensembling [7.569288952340753]
Ensemble algorithms offer state of the art performance in many machine learning applications.
We formulate a generalized bias-variance decomposition for arbitrary twice differentiable loss functions.
We derive a Generalized Negative Correlation Learning algorithm which offers explicit control over the ensemble's diversity.
arXiv Detail & Related papers (2020-11-05T16:29:22Z) - The Role of Mutual Information in Variational Classifiers [47.10478919049443]
We study the generalization error of classifiers relying on encodings trained on the cross-entropy loss.
We derive bounds to the generalization error showing that there exists a regime where the generalization error is bounded by the mutual information.
arXiv Detail & Related papers (2020-10-22T12:27:57Z) - Quantum Ensemble for Classification [2.064612766965483]
A powerful way to improve performance in machine learning is to construct an ensemble that combines the predictions of multiple models.
We propose a new quantum algorithm that exploits quantum superposition, entanglement and interference to build an ensemble of classification models.
arXiv Detail & Related papers (2020-07-02T11:26:54Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Stacked Generalizations in Imbalanced Fraud Data Sets using Resampling
Methods [2.741266294612776]
This study uses stacked generalization, which is a two-step process of combining machine learning methods, called meta or super learners, for improving the performance of algorithms.
Building a test harness that accounts for all permutations of algorithm sample set pairs demonstrates that the complex, intrinsic data structures are all thoroughly tested.
arXiv Detail & Related papers (2020-04-03T20:38:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.