論文の概要: PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2202.08982v3
- Date: Thu, 21 Mar 2024 05:55:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 20:55:19.487848
- Title: PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
- Title(参考訳): PGCN:時空間交通予測のためのプログレッシブグラフ畳み込みネットワーク
- Authors: Yuyol Shin, Yoonjin Yoon,
- Abstract要約: 我々は、プログレッシブグラフ畳み込みネットワーク(PGCN)と呼ばれる新しいトラフィック予測フレームワークを提案する。
PGCNは、トレーニングおよびテストフェーズ中にオンライン入力データに段階的に適応することで、グラフのセットを構築する。
提案したモデルでは,すべてのデータセットの一貫性を保ちながら,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 4.14360329494344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complex spatial-temporal correlations in transportation networks make the traffic forecasting problem challenging. Since transportation system inherently possesses graph structures, many research efforts have been put with graph neural networks. Recently, constructing adaptive graphs to the data has shown promising results over the models relying on a single static graph structure. However, the graph adaptations are applied during the training phases and do not reflect the data used during the testing phases. Such shortcomings can be problematic especially in traffic forecasting since the traffic data often suffer from unexpected changes and irregularities in the time series. In this study, we propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN). PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases. Specifically, we implemented the model to construct progressive adjacency matrices by learning trend similarities among graph nodes. Then, the model is combined with the dilated causal convolution and gated activation unit to extract temporal features. With residual and skip connections, PGCN performs the traffic prediction. When applied to seven real-world traffic datasets of diverse geometric nature, the proposed model achieves state-of-the-art performance with consistency in all datasets. We conclude that the ability of PGCN to progressively adapt to input data enables the model to generalize in different study sites with robustness.
- Abstract(参考訳): 交通ネットワークにおける複雑な時空間相関は、交通予測問題を困難にしている。
輸送システムは本質的にグラフ構造を持っているため、多くの研究がグラフニューラルネットワークで行われている。
近年、データに対する適応グラフの構築は、単一の静的グラフ構造に依存するモデルに対して有望な結果を示している。
しかし、グラフ適応はトレーニングフェーズで適用され、テストフェーズで使用されるデータを反映しない。
このような欠点は、特に交通データが時系列の予期せぬ変化や不規則に悩まされるため、交通予測において問題となる可能性がある。
本研究では,PGCN(Progressive Graph Convolutional Network)と呼ばれる新しいトラフィック予測フレームワークを提案する。
PGCNは、トレーニングおよびテストフェーズ中にオンライン入力データに段階的に適応することで、グラフのセットを構築する。
具体的には,グラフノード間の傾向類似性を学習することで,進行的隣接行列を構築するモデルを実装した。
そして、拡張因果畳み込みとゲート活性化ユニットと組み合わせて時間的特徴を抽出する。
残差接続とスキップ接続により、PGCNはトラフィック予測を行う。
多様な幾何学的性質を持つ7つの実世界のトラフィックデータセットに適用すると、提案モデルはすべてのデータセットで一貫性のある最先端のパフォーマンスを達成する。
我々は、PGCNが入力データに徐々に適応する能力により、頑健な異なる研究現場でモデルを一般化することができると結論付けた。
関連論文リスト
- A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
我々は,分散シフト下での深層グラフ学習について,最新かつ先見的なレビューを行う。
具体的には,グラフ OOD 一般化,トレーニング時グラフ OOD 適応,テスト時グラフ OOD 適応の3つのシナリオについて述べる。
文献の理解を深めるために,提案した分類に基づく既存モデルを体系的に分類した。
論文 参考訳(メタデータ) (2024-10-25T02:39:56Z) - Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
本研究では,グラフプルーニングと転送学習の枠組みに基づく新しい時空間畳み込みネットワーク(TL-GPSTGN)を提案する。
その結果、単一のデータセット上でのTL-GPSTGNの異常な予測精度と、異なるデータセット間の堅牢なマイグレーション性能が示された。
論文 参考訳(メタデータ) (2024-09-25T00:59:23Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
本稿では,グラフ学習戦略と一般的なグラフ畳み込みアルゴリズムの体系的なレビューを行う。
次に、最近提案された空間時間グラフネットワークモデルの長所と短所を包括的に分析する。
ディープラーニングフレームワークPyTorchを用いたSTG4Trafficという研究を構築し,2種類のトラフィックデータセットに対して,標準化されたスケーラブルなベンチマークを確立する。
論文 参考訳(メタデータ) (2023-07-02T06:56:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
交通予測のための新しいネットワークである空間時間適応グラフ畳み込み(STAAN)を提案する。
まず,GCN処理中に事前に定義された行列を使わずに適応的依存行列を採用し,ノード間の依存性を推定する。
第2に,グローバルな依存のために設計されたグラフアテンションネットワークに基づくPWアテンションと,空間ブロックとしてのGCNを統合した。
論文 参考訳(メタデータ) (2022-06-07T09:08:35Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting [47.19400232038575]
ノード固有のパターンの学習は、事前に定義されたグラフが避けられる間、トラフィック予測に不可欠である、と我々は主張する。
本稿では,新たな機能を備えたグラフ・コンパス・ネットワーク(GCN)の拡張のための2つの適応モジュールを提案する。
実世界の2つの交通データセットに対する実験により、AGCRNは空間接続に関する事前定義されたグラフを使わずに、かなりのマージンで最先端の性能を示した。
論文 参考訳(メタデータ) (2020-07-06T15:51:10Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。