Out of Distribution Data Detection Using Dropout Bayesian Neural
Networks
- URL: http://arxiv.org/abs/2202.08985v1
- Date: Fri, 18 Feb 2022 02:23:43 GMT
- Title: Out of Distribution Data Detection Using Dropout Bayesian Neural
Networks
- Authors: Andre T. Nguyen, Fred Lu, Gary Lopez Munoz, Edward Raff, Charles
Nicholas, James Holt
- Abstract summary: We first show how previous attempts to leverage the randomized embeddings induced by the intermediate layers of a dropout BNN can fail due to the distance metric used.
We introduce an alternative approach to measuring embedding uncertainty, justify its use theoretically, and demonstrate how incorporating embedding uncertainty improves OOD data identification across three tasks: image classification, language classification, and malware detection.
- Score: 29.84998820573774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the utility of information contained within a dropout based
Bayesian neural network (BNN) for the task of detecting out of distribution
(OOD) data. We first show how previous attempts to leverage the randomized
embeddings induced by the intermediate layers of a dropout BNN can fail due to
the distance metric used. We introduce an alternative approach to measuring
embedding uncertainty, justify its use theoretically, and demonstrate how
incorporating embedding uncertainty improves OOD data identification across
three tasks: image classification, language classification, and malware
detection.
Related papers
- Leveraging Unlabeled Data for 3D Medical Image Segmentation through
Self-Supervised Contrastive Learning [3.7395287262521717]
Current 3D semi-supervised segmentation methods face significant challenges such as limited consideration of contextual information.
We introduce two distinctworks designed to explore and exploit the discrepancies between them, ultimately correcting the erroneous prediction results.
We employ a self-supervised contrastive learning paradigm to distinguish between reliable and unreliable predictions.
arXiv Detail & Related papers (2023-11-21T14:03:16Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
We study the case of monitoring the healthy operation of a deep neural network (DNN) receiving a stream of data.
Using selective prediction principles, we propose a distribution deviation detection method for DNNs.
Our novel detection method performs on-par or better than the state-of-the-art, while consuming substantially lower time.
arXiv Detail & Related papers (2022-10-19T21:27:25Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
We show that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection.
We propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information.
Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD.
arXiv Detail & Related papers (2022-07-15T14:39:57Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - iDECODe: In-distribution Equivariance for Conformal Out-of-distribution
Detection [24.518698391381204]
Machine learning methods such as deep neural networks (DNNs) often generate incorrect predictions with high confidence.
We propose the new method iDECODe, leveraging in-distribution equivariance for conformal OOD detection.
We demonstrate the efficacy of iDECODe by experiments on image and audio datasets, obtaining state-of-the-art results.
arXiv Detail & Related papers (2022-01-07T05:21:40Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs [12.429095025814345]
We propose pseudo-BNNs where instead of learning distributions over weights, we use point estimates and perturb weights at the time of inference.
Overall, this combination results in a principled technique to detect OOD samples at the time of inference.
arXiv Detail & Related papers (2021-02-02T06:23:04Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.