論文の概要: Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT)
- arxiv url: http://arxiv.org/abs/2202.09021v1
- Date: Fri, 18 Feb 2022 04:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-21 14:23:39.609847
- Title: Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT)
- Title(参考訳): 不均一都市グラフ注意ネットワーク(HUGAT)を用いた効果的な都市域表現学習
- Authors: Namwoo Kim, Yoonjin Yoon
- Abstract要約: 都市域の表現を学習するためのヘテロジニアスな都市グラフアテンションネットワーク(HUGAT)を提案する。
ニューヨークのデータに関する我々の実験では、HUGATは最先端のすべてのモデルより優れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Revealing the hidden patterns shaping the urban environment is essential to
understand its dynamics and to make cities smarter. Recent studies have
demonstrated that learning the representations of urban regions can be an
effective strategy to uncover the intrinsic characteristics of urban areas.
However, existing studies lack in incorporating diversity in urban data
sources. In this work, we propose heterogeneous urban graph attention network
(HUGAT), which incorporates heterogeneity of diverse urban datasets. In HUGAT,
heterogeneous urban graph (HUG) incorporates both the geo-spatial and temporal
people movement variations in a single graph structure. Given a HUG, a set of
meta-paths are designed to capture the rich urban semantics as composite
relations between nodes. Region embedding is carried out using heterogeneous
graph attention network (HAN). HUGAT is designed to consider multiple learning
objectives of city's geo-spatial and mobility variations simultaneously. In our
extensive experiments on NYC data, HUGAT outperformed all the state-of-the-art
models. Moreover, it demonstrated a robust generalization capability across the
various prediction tasks of crime, average personal income, and bike flow as
well as the spatial clustering task.
- Abstract(参考訳): 都市環境を形作る隠れパターンの展開は、そのダイナミクスを理解し、都市をより賢くするために不可欠である。
近年の研究では、市街地の表現を学ぶことは、都市の本質的特徴を明らかにする効果的な戦略となることが示されている。
しかし、既存の研究では都市データソースに多様性を組み込むことができない。
本研究では,多様な都市データセットの均一性を組み込んだヘテロジニアスな都市グラフアテンションネットワーク(HUGAT)を提案する。
HUGATでは、ヘテロジニアス・アーバングラフ (HUG) は、地理的空間と時間的人々の移動のばらつきを単一のグラフ構造に組み込んでいる。
HUGを与えられたメタパスは、ノード間の複合関係としてリッチな都市セマンティクスをキャプチャするように設計されている。
領域埋め込みは、ヘテロジニアスグラフアテンションネットワーク(han)を用いて行われる。
hugatは、都市の地理空間とモビリティのバリエーションの複数の学習目標を同時に考慮するように設計されている。
ニューヨークのデータに関する大規模な実験で、HUGATは最先端のすべてのモデルを上回った。
さらに,犯罪,平均的個人所得,自転車フロー,空間クラスタリングといった様々な予測タスクに対して,堅牢な一般化能力を示した。
関連論文リスト
- StreetviewLLM: Extracting Geographic Information Using a Chain-of-Thought Multimodal Large Language Model [12.789465279993864]
地理空間予測は災害管理、都市計画、公衆衛生など様々な分野において重要である。
提案するStreetViewLLMは,大規模言語モデルと連鎖推論とマルチモーダルデータソースを統合した新しいフレームワークである。
このモデルは、香港、東京、シンガポール、ロサンゼルス、ニューヨーク、ロンドン、パリを含む7つの世界都市に適用されている。
論文 参考訳(メタデータ) (2024-11-19T05:15:19Z) - Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
通勤フロー予測は、現実の自治体の業務に欠かせない課題である。
我々は,異なるタイプのODフローを予測するために,意味のある領域埋め込みを生成するヘテロジニアスグラフベースモデルを開発した。
提案モデルでは,一様都市構造の観点から既存モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-27T03:30:01Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
我々は,都市間セマンティックセマンティックセグメンテーションタスクの研究を目的とした,新しいマルチモーダルリモートセンシングベンチマークデータセット(ハイパースペクトル,マルチスペクトル,SARを含む)を構築した。
単一都市に留まらず,多都市環境からAIモデルの一般化能力を促進するため,高解像度なドメイン適応ネットワークであるHighDANを提案する。
高DANは, 並列高分解能融合方式で, 都市景観の空間的トポロジカルな構造を良好に維持することができる。
論文 参考訳(メタデータ) (2023-09-26T23:55:39Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Spatial Heterophily Aware Graph Neural Networks [35.95622680895503]
グラフニューラルネットワーク(GNN)は、都市を都市グラフとして定式化し、そのノードは、地域や関心点のような都市オブジェクトである。
近年,接続ノードが異なるヘテロフィリーグラフに対処するために,いくつかの拡張GNNアーキテクチャが開発されている。
しかし、都市グラフは通常、独特の空間的ヘテロフィリーな性質を持つことが観察され、つまり、異なる空間的距離の隣人の相似性は大きな多様性を示す。
我々は空間的多様性スコア(Spatial Diversity Score)と呼ばれるメトリクスを提案し、空間的ヘテロフィリを定量的に測定し、それがGNNの性能に与える影響を示す。
論文 参考訳(メタデータ) (2023-06-21T09:35:50Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
場所間の時間的関係を見つけることは、動的なオフライン広告やスマートな公共交通計画など、多くの都市アプリケーションに役立つ。
空間的に進化するグラフニューラルネットワーク(SEENet)を含むグラフ学習方式によるTrialの解を提案する。
SEConvは時間内アグリゲーションと時間間伝搬を実行し、位置メッセージパッシングの観点から、多面的に空間的に進化するコンテキストをキャプチャする。
SE-SSLは、位置表現学習を強化し、関係の空間性をさらに扱えるように、グローバルな方法でタイムアウェアな自己教師型学習タスクを設計する。
論文 参考訳(メタデータ) (2023-06-15T07:48:32Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
都市域を階層的にモデル化する都市域グラフ(URG)を構築した。
そこで我々は,都市部をURGから効果的に検出する新しいコンテキスト・マスタ・スレーブ・フレームワークを設計した。
提案手法は,都市部における紫外線検出の一般性と特異性のバランスをとることができる。
論文 参考訳(メタデータ) (2022-11-26T18:17:39Z) - MetroGAN: Simulating Urban Morphology with Generative Adversarial
Network [10.504296192020497]
本稿では,都市形態学シミュレーションのための地理知識,すなわちメトロポリタンGAN(MetroGAN)の枠組みを提案する。
その結果,MetroGANはすべての指標において,最先端の都市シミュレーション手法よりも20%以上優れていた。
論文 参考訳(メタデータ) (2022-07-06T11:02:24Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
都市部の異質性を利用したニューラルネットワーク(GNN)を提案する。
アメリカ合衆国の16大都市圏において,何百万もの携帯電話利用者による大規模高解像度モビリティデータセットを用いて,都市部コンポーネント間の複雑な関係をエンコードしていることを示す。
異なる郡で訓練されたモデルによって生成された埋め込みは、他の郡における創発的空間構造の50%から60%を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-10-24T07:13:14Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。