Learning Physics-Informed Neural Networks without Stacked
Back-propagation
- URL: http://arxiv.org/abs/2202.09340v1
- Date: Fri, 18 Feb 2022 18:07:54 GMT
- Title: Learning Physics-Informed Neural Networks without Stacked
Back-propagation
- Authors: Di He, Wenlei Shi, Shanda Li, Xiaotian Gao, Jia Zhang, Jiang Bian,
Liwei Wang, Tie-Yan Liu
- Abstract summary: We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
- Score: 82.26566759276105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Network (PINN) has become a commonly used machine
learning approach to solve partial differential equations (PDE). But, facing
high-dimensional second-order PDE problems, PINN will suffer from severe
scalability issues since its loss includes second-order derivatives, the
computational cost of which will grow along with the dimension during stacked
back-propagation. In this paper, we develop a novel approach that can
significantly accelerate the training of Physics-Informed Neural Networks. In
particular, we parameterize the PDE solution by the Gaussian smoothed model and
show that, derived from Stein's Identity, the second-order derivatives can be
efficiently calculated without back-propagation. We further discuss the model
capacity and provide variance reduction methods to address key limitations in
the derivative estimation. Experimental results show that our proposed method
can achieve competitive error compared to standard PINN training but is two
orders of magnitude faster.
Related papers
- Physics-Informed Neural Networks with Trust-Region Sequential Quadratic Programming [4.557963624437784]
Recent research has noted that Physics-Informed Neural Networks (PINNs) may fail to learn relatively complex Partial Differential Equations (PDEs)
This paper addresses the failure modes of PINNs by introducing a novel, hard-constrained deep learning method -- trust-region Sequential Quadratic Programming (trSQP-PINN)
In contrast to directly training the penalized soft-constrained loss as in PINNs, our method performs a linear-quadratic approximation of the hard-constrained loss, while leveraging the soft-constrained loss to adaptively adjust the trust-region radius.
arXiv Detail & Related papers (2024-09-16T23:22:12Z) - General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Error Analysis of Physics-Informed Neural Networks for Approximating
Dynamic PDEs of Second Order in Time [1.123111111659464]
We consider the approximation of a class of dynamic partial differential equations (PDE) of second order in time by the physics-informed neural network (PINN) approach.
Our analyses show that, with feed-forward neural networks having two hidden layers and the $tanh$ activation function, the PINN approximation errors for the solution field can be effectively bounded by the training loss and the number of training data points.
We present ample numerical experiments with the new PINN algorithm for the wave equation, the Sine-Gordon equation and the linear elastodynamic equation, which show that the method can capture
arXiv Detail & Related papers (2023-03-22T00:51:11Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
We develop a nonlocal PINN approach using the Peridynamic Differential Operator (PDDO)---a numerical method which incorporates long-range interactions and removes spatial derivatives in the governing equations.
Because the PDDO functions can be readily incorporated in the neural network architecture, the nonlocality does not degrade the performance of modern deep-learning algorithms.
We document the superior behavior of nonlocal PINN with respect to local PINN in both solution accuracy and parameter inference.
arXiv Detail & Related papers (2020-05-31T06:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.