Error Analysis of Physics-Informed Neural Networks for Approximating
Dynamic PDEs of Second Order in Time
- URL: http://arxiv.org/abs/2303.12245v1
- Date: Wed, 22 Mar 2023 00:51:11 GMT
- Title: Error Analysis of Physics-Informed Neural Networks for Approximating
Dynamic PDEs of Second Order in Time
- Authors: Yanxia Qian, Yongchao Zhang, Yunqing Huang, Suchuan Dong
- Abstract summary: We consider the approximation of a class of dynamic partial differential equations (PDE) of second order in time by the physics-informed neural network (PINN) approach.
Our analyses show that, with feed-forward neural networks having two hidden layers and the $tanh$ activation function, the PINN approximation errors for the solution field can be effectively bounded by the training loss and the number of training data points.
We present ample numerical experiments with the new PINN algorithm for the wave equation, the Sine-Gordon equation and the linear elastodynamic equation, which show that the method can capture
- Score: 1.123111111659464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the approximation of a class of dynamic partial differential
equations (PDE) of second order in time by the physics-informed neural network
(PINN) approach, and provide an error analysis of PINN for the wave equation,
the Sine-Gordon equation and the linear elastodynamic equation. Our analyses
show that, with feed-forward neural networks having two hidden layers and the
$\tanh$ activation function, the PINN approximation errors for the solution
field, its time derivative and its gradient field can be effectively bounded by
the training loss and the number of training data points (quadrature points).
Our analyses further suggest new forms for the training loss function, which
contain certain residuals that are crucial to the error estimate but would be
absent from the canonical PINN loss formulation. Adopting these new forms for
the loss function leads to a variant PINN algorithm. We present ample numerical
experiments with the new PINN algorithm for the wave equation, the Sine-Gordon
equation and the linear elastodynamic equation, which show that the method can
capture the solution well.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Neural tangent kernel analysis of PINN for advection-diffusion equation [0.0]
Physics-informed neural networks (PINNs) numerically approximate the solution of a partial differential equation (PDE)
PINNs are known to struggle even in simple cases where the closed-form analytical solution is available.
This work focuses on a systematic analysis of PINNs for the linear advection-diffusion equation (LAD) using the Neural Tangent Kernel (NTK) theory.
arXiv Detail & Related papers (2022-11-21T18:35:14Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems.
The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations.
arXiv Detail & Related papers (2022-08-19T04:26:40Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
The recently proposed physics-informed neural network (PINN) has achieved successful applications in solving a wide range of partial differential equations (PDEs)
In this paper, we solve the acoustic and visco-acoustic scattered-field wave equation in the frequency domain with PINN instead of the wave equation to remove source perturbation.
We show that PML and quadratic neurons improve the results as well as attenuation and discuss the reason for this improvement.
arXiv Detail & Related papers (2022-08-16T13:29:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
We develop a nonlocal PINN approach using the Peridynamic Differential Operator (PDDO)---a numerical method which incorporates long-range interactions and removes spatial derivatives in the governing equations.
Because the PDDO functions can be readily incorporated in the neural network architecture, the nonlocality does not degrade the performance of modern deep-learning algorithms.
We document the superior behavior of nonlocal PINN with respect to local PINN in both solution accuracy and parameter inference.
arXiv Detail & Related papers (2020-05-31T06:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.