論文の概要: Holistic Attention-Fusion Adversarial Network for Single Image Defogging
- arxiv url: http://arxiv.org/abs/2202.09553v1
- Date: Sat, 19 Feb 2022 09:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 09:10:38.092958
- Title: Holistic Attention-Fusion Adversarial Network for Single Image Defogging
- Title(参考訳): 単一画像復調のためのホロスティックアテンションフュージョン対応ネットワーク
- Authors: Wei Liu, Cheng Chen, Rui Jiang, Tao Lu and Zixiang Xiong
- Abstract要約: 我々は,単一画像デファイングのための新しい生成的対向ネットワークである全体的注意融合対向ネットワーク(HAAN)を開発した。
各ブロックには、3つの学習ベースモジュール、すなわち霧除去、色調回復、霧合成の3つのモジュールがあり、互いに拘束されて高品質な画像を生成する。
合成データセットと実世界のデータセットの両方の実験により、HAANは定量的精度と主観的視覚的品質の点で最先端のデファッジ手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 16.59494337699748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial learning-based image defogging methods have been extensively
studied in computer vision due to their remarkable performance. However, most
existing methods have limited defogging capabilities for real cases because
they are trained on the paired clear and synthesized foggy images of the same
scenes. In addition, they have limitations in preserving vivid color and rich
textual details in defogging. To address these issues, we develop a novel
generative adversarial network, called holistic attention-fusion adversarial
network (HAAN), for single image defogging. HAAN consists of a Fog2Fogfree
block and a Fogfree2Fog block. In each block, there are three learning-based
modules, namely, fog removal, color-texture recovery, and fog synthetic, that
are constrained each other to generate high quality images. HAAN is designed to
exploit the self-similarity of texture and structure information by learning
the holistic channel-spatial feature correlations between the foggy image with
its several derived images. Moreover, in the fog synthetic module, we utilize
the atmospheric scattering model to guide it to improve the generative quality
by focusing on an atmospheric light optimization with a novel sky segmentation
network. Extensive experiments on both synthetic and real-world datasets show
that HAAN outperforms state-of-the-art defogging methods in terms of
quantitative accuracy and subjective visual quality.
- Abstract(参考訳): 逆学習に基づく画像復号法はコンピュータビジョンにおいて顕著な性能のために広く研究されている。
しかし、既存のほとんどの手法は、同一シーンの鮮明で合成された霧の画像をペアで訓練するため、実例のデファジグ能力に制限がある。
加えて、鮮やかな色と豊かなテクストの詳細を保持することに制限がある。
これらの問題に対処するため,我々は,単一画像認識のための新しい生成型adversarial networkであるholistic attention-fusion adversarial network (haan)を開発した。
HAANはFog2FogフリーブロックとFogfree2Fogブロックで構成される。
各ブロックには3つの学習ベースのモジュール、すなわち霧除去、色覚回復、霧合成があり、互いに制約をかけ、高品質な画像を生成する。
HAANは、霧画像といくつかの派生画像との全体的チャネル-空間的特徴相関を学習することにより、テクスチャと構造情報の自己相似性を利用するように設計されている。
また,霧合成モジュールでは,新しいスカイセグメンテーションネットワークを用いた大気光最適化に着目し,大気散乱モデルを用いて生成品質の向上を導く。
合成と実世界の両方のデータセットに対する大規模な実験により、HAANは定量的精度と主観的視覚的品質の点で最先端のデファッジ手法より優れていることが示された。
関連論文リスト
- Toward Scalable Image Feature Compression: A Content-Adaptive and Diffusion-Based Approach [44.03561901593423]
本稿では,スケーラブルな画像圧縮のためのコンテンツ適応拡散モデルを提案する。
提案手法は拡散過程を通じて微細なテクスチャを符号化し,知覚品質を向上する。
画像再構成および下流マシンビジョンタスクにおいて,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-10-08T15:48:34Z) - Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
GAN(Generative Adversarial Networks)は、医療画像の応用を認知するための強力なフレームワークとして証明されている。
本研究は,Gray-Level-Co-occurrence Matrix (GLCM) の内在的マルチスケール特性を利用した損失関数を提案する。
また,画像から抽出したマルチスケールテクスチャ情報を動的に集約する自己認識層を導入する。
論文 参考訳(メタデータ) (2024-03-25T11:28:52Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
我々は,高品質でリアルな肖像画を復元することを目的とした,ブラインドフェイス修復のための新しいフレームワークであるENTEDを提案する。
劣化した入力画像と参照画像の間で高品質なテクスチャ特徴を伝達するために,テクスチャ抽出と分布の枠組みを利用する。
われわれのフレームワークにおけるStyleGANのようなアーキテクチャは、現実的な画像を生成するために高品質な潜伏符号を必要とする。
論文 参考訳(メタデータ) (2024-01-13T04:54:59Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal from
Optical Satellite Images [27.02507384522271]
本稿では,光衛星画像の高速クラウド除去に深部畳み込みネットワークを用いた条件付き拡散を利用したDiffCRという新しいフレームワークを提案する。
条件付き特徴抽出のための分離エンコーダを導入し、条件付き入力と合成出力との外観情報の密接な類似性を確保するために、ロバストな色表現を提供する。
論文 参考訳(メタデータ) (2023-08-08T17:34:28Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Dual-Scale Single Image Dehazing Via Neural Augmentation [29.019279446792623]
モデルベースとデータ駆動のアプローチを組み合わせることで,新しい単一画像デハージングアルゴリズムを導入する。
その結果,提案アルゴリズムは実世界および合成ヘイズ画像からヘイズをうまく除去できることが示唆された。
論文 参考訳(メタデータ) (2022-09-13T11:56:03Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z) - Efficient and Model-Based Infrared and Visible Image Fusion Via
Algorithm Unrolling [24.83209572888164]
赤外線および可視画像融合(IVIF)は、赤外線画像からの熱放射情報を保持する画像と、可視画像からテクスチャの詳細を取得することを期待している。
従来のCNNベースのIVIFモデルの欠点を克服するために,モデルベース畳み込みニューラルネットワーク(CNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-05-12T16:15:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。