論文の概要: MANet: Improving Video Denoising with a Multi-Alignment Network
- arxiv url: http://arxiv.org/abs/2202.09704v1
- Date: Sun, 20 Feb 2022 00:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 14:43:59.824349
- Title: MANet: Improving Video Denoising with a Multi-Alignment Network
- Title(参考訳): MANet:マルチアライメントネットワークによるビデオデノイングの改善
- Authors: Yaping Zhao, Haitian Zheng, Zhongrui Wang, Jiebo Luo, Edmund Y. Lam
- Abstract要約: 本稿では,複数フローの提案とアテンションに基づく平均化を行うマルチアライメントネットワークを提案する。
大規模ビデオデータセットを用いた実験により,本手法は調音ベースラインモデルを0.2dBで改善することを示した。
- 参考スコア(独自算出の注目度): 72.93429911044903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In video denoising, the adjacent frames often provide very useful
information, but accurate alignment is needed before such information can be
harnassed. In this work, we present a multi-alignment network, which generates
multiple flow proposals followed by attention-based averaging. It serves to
mimics the non-local mechanism, suppressing noise by averaging multiple
observations. Our approach can be applied to various state-of-the-art models
that are based on flow estimation. Experiments on a large-scale video dataset
demonstrate that our method improves the denoising baseline model by 0.2dB, and
further reduces the parameters by 47% with model distillation.
- Abstract(参考訳): ビデオのデノイングでは、隣接するフレームは、しばしば非常に有用な情報を提供するが、そのような情報がハーナスされる前に正確なアライメントが必要である。
本稿では,複数のフロー提案を生成し,注意に基づく平均化を行うマルチアリゲーションネットワークを提案する。
これは非局所的なメカニズムを模倣し、複数の観測を平均化することでノイズを抑制する。
本手法は,フロー推定に基づく各種最先端モデルに適用可能である。
大規模ビデオデータセットを用いた実験により,本手法は基本ラインモデルを0.2dB改善し,モデルの蒸留によりパラメータを47%削減することを示した。
関連論文リスト
- MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection [15.72443573134312]
本研究では,ビデオから抽出した特徴ベクトルを,固定分布を持つランダム変数の実現として扱う。
我々は、デノナイジングスコアマッチングの修正を用いて、ビデオ異常検出装置を訓練する。
5つの人気ビデオ異常検出ベンチマーク実験により,最先端の性能が示された。
論文 参考訳(メタデータ) (2024-03-21T15:46:19Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
本研究は, フレームごとのノイズを, 全フレーム間で共有されるベースノイズ, 時間軸に沿って変化する残雑音に分解することで, 拡散過程を分解する。
様々なデータセットの実験により,ビデオフュージョンと呼ばれる我々の手法が,高品質なビデオ生成において,GANベースと拡散ベースの両方の選択肢を上回ることが確認された。
論文 参考訳(メタデータ) (2023-03-15T02:16:39Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
十分なノイズ処理は、画像処理にとって重要な第一歩であることが多い。
ディープニューラルネットワーク(DNN)は画像のノイズ化に広く利用されている。
本研究では,タッカー低ランクテンソル近似に基づく自己教師付き画像復調フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:11:05Z) - Learning Task-Oriented Flows to Mutually Guide Feature Alignment in
Synthesized and Real Video Denoising [137.5080784570804]
Video Denoisingは、クリーンなノイズを回復するためにビデオからノイズを取り除くことを目的としている。
既存の研究によっては、近辺のフレームから追加の空間的時間的手がかりを利用することで、光学的流れがノイズ発生の助けとなることが示されている。
本稿では,様々なノイズレベルに対してより堅牢なマルチスケール光フロー誘導型ビデオデノイング法を提案する。
論文 参考訳(メタデータ) (2022-08-25T00:09:18Z) - PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows [20.382995180671205]
ポイント・クラウド・デノゲーション(Point cloud denoising)は、ノイズや外れ値によって破損した生の観測からクリーン・ポイント・クラウドを復元することを目的としている。
本稿では,正規化フローとノイズ分散手法を取り入れた,ディープラーニングに基づく新しいDenoisingモデルを提案する。
論文 参考訳(メタデータ) (2022-03-11T14:17:58Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z) - Robust Unsupervised Multi-Object Tracking in Noisy Environments [5.409476600348953]
頑健なマルチオブジェクト追跡(MOT)モデルである AttU-Net を導入する。
提案したシングルヘッドアテンションモデルは、異なるセグメントスケールでの視覚的表現を学習することで、ノイズの負の影響を制限するのに役立つ。
本手法をMNISTとAtariゲームビデオベンチマークで評価する。
論文 参考訳(メタデータ) (2021-05-20T19:38:03Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。