論文の概要: Generalized Bayesian Additive Regression Trees Models: Beyond
Conditional Conjugacy
- arxiv url: http://arxiv.org/abs/2202.09924v1
- Date: Sun, 20 Feb 2022 22:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 08:51:18.579897
- Title: Generalized Bayesian Additive Regression Trees Models: Beyond
Conditional Conjugacy
- Title(参考訳): 一般化ベイズ加法的回帰木モデル:条件共役を超えて
- Authors: Antonio R. Linero
- Abstract要約: 本稿では,BARTの適用範囲を任意の一般化BARTモデルに拡大する。
我々のアルゴリズムは、ユーザがその勾配とフィッシャー情報を(任意に)計算できることのみを要求する。
我々は生存分析、構造化ヘテロスケダスティック回帰、ガンマ形状回帰の例を考察する。
- 参考スコア(独自算出の注目度): 2.969705152497174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian additive regression trees have seen increased interest in recent
years due to their ability to combine machine learning techniques with
principled uncertainty quantification. The Bayesian backfitting algorithm used
to fit BART models, however, limits their application to a small class of
models for which conditional conjugacy exists. In this article, we greatly
expand the domain of applicability of BART to arbitrary \emph{generalized BART}
models by introducing a very simple, tuning-parameter-free, reversible jump
Markov chain Monte Carlo algorithm. Our algorithm requires only that the user
be able to compute the likelihood and (optionally) its gradient and Fisher
information. The potential applications are very broad; we consider examples in
survival analysis, structured heteroskedastic regression, and gamma shape
regression.
- Abstract(参考訳): ベイズ加法回帰木は、機械学習技術と原理的不確実性定量化を組み合わせる能力により、近年関心が高まっている。
しかし、ベイジアンバックフィッティングアルゴリズムはBARTモデルに適合するが、それらの応用を条件共役が存在する少数のモデルに限定する。
本稿では、非常に単純でチューニングパラメータなしで可逆なジャンプマルコフ連鎖モンテカルロアルゴリズムを導入することにより、BARTの適用範囲を任意の \emph{ Generalized BART} モデルに拡大する。
我々のアルゴリズムは、ユーザがその勾配とフィッシャー情報を(任意に)計算できることのみを要求する。
我々は生存分析、構造化ヘテロスケダスティック回帰、ガンマ形状回帰の例を考察する。
関連論文リスト
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
本稿では,トランスフォーマーに基づくインコンテキスト学習者が標準学習アルゴリズムを暗黙的に実装する仮説について検討する。
訓練された文脈内学習者は、勾配降下、隆起回帰、および正確な最小二乗回帰によって計算された予測値と密に一致していることを示す。
文脈内学習者がこれらの予測器とアルゴリズム的特徴を共有するという予備的証拠。
論文 参考訳(メタデータ) (2022-11-28T18:59:51Z) - Rethinking Log Odds: Linear Probability Modelling and Expert Advice in
Interpretable Machine Learning [8.831954614241234]
線形化付加モデル(LAM)とSubscaleHedgeの2つの拡張を含む、解釈可能な機械学習モデルのファミリーを紹介する。
LAMは、GAM(General Additive Models)におけるユビキタスなロジスティックリンク関数を置き換えるものであり、SubscaleHedgeはサブスケールと呼ばれる機能のサブセットでトレーニングされたベースモデルを組み合わせるためのエキスパートアドバイスアルゴリズムである。
論文 参考訳(メタデータ) (2022-11-11T17:21:57Z) - SoftBart: Soft Bayesian Additive Regression Trees [2.969705152497174]
本稿では,LineroとYangのSoft BARTアルゴリズムに適合するSoftBartパッケージを提案する。
このパッケージの主な目標は、より大きなモデルにBARTを組み込むことである。
標準的な予測タスクにこのパッケージを使う方法と、より大きなモデルにBARTモデルを組み込む方法の両方を示します。
論文 参考訳(メタデータ) (2022-10-28T19:25:45Z) - GP-BART: a novel Bayesian additive regression trees approach using
Gaussian processes [1.03590082373586]
GP-BARTモデル(GP-BART model)は、すべての木間の各終端ノードの予測にGP先行を仮定することで制限に対処するBARTの拡張である。
モデルの有効性は、シミュレーションおよび実世界のデータへの応用を通じて実証され、様々なシナリオにおける従来のモデリング手法のパフォーマンスを上回る。
論文 参考訳(メタデータ) (2022-04-05T11:18:44Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
本研究では,異なる回帰モデルに対する決定木の一般化性能について検討する。
これにより、アルゴリズムが新しいデータに一般化するために(あるいは作らない)仮定する帰納的バイアスが引き起こされる。
スパース加法モデルに適合する大規模な決定木アルゴリズムに対して、シャープな2乗誤差一般化を低い境界で証明する。
論文 参考訳(メタデータ) (2021-10-18T21:22:40Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z) - Stochastic tree ensembles for regularized nonlinear regression [0.913755431537592]
本稿では,非線形回帰のための新しいツリーアンサンブル法を開発し,これをXBARTと呼ぶ。
ベイズモデルからの正規化と探索戦略と計算効率のよい手法を組み合わせることで、新しい手法は最先端の性能を達成できる。
論文 参考訳(メタデータ) (2020-02-09T14:37:02Z) - Particle-Gibbs Sampling For Bayesian Feature Allocation Models [77.57285768500225]
最も広く使われているMCMC戦略は、特徴割り当て行列のギブス更新に頼っている。
単一移動で特徴割り当て行列の全行を更新できるギブスサンプリング器を開発した。
このサンプルは、計算複雑性が特徴数で指数関数的にスケールするにつれて、多数の特徴を持つモデルにとって実用的ではない。
我々は,行ワイズギブズ更新と同じ分布を目標としたパーティクルギブズサンプルの開発を行うが,特徴数でのみ線形に増大する計算複雑性を有する。
論文 参考訳(メタデータ) (2020-01-25T22:11:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。