Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive
Coding for Multivariate Time-Series Anomaly Detection
- URL: http://arxiv.org/abs/2202.10001v1
- Date: Mon, 21 Feb 2022 05:47:22 GMT
- Title: Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive
Coding for Multivariate Time-Series Anomaly Detection
- Authors: Heejeong Choi, Subin Kim, Pilsung Kang
- Abstract summary: Real-world time-series data exhibit complex temporal dependencies.
RAE-M EPC learns informative normal representations based on multi-resolution ensemble and predictive coding.
Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models.
- Score: 3.772827533440353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large-scale time-series data can easily be found in real-world
applications, multivariate time-series anomaly detection has played an
essential role in diverse industries. It enables productivity improvement and
maintenance cost reduction by preventing malfunctions and detecting anomalies
based on time-series data. However, multivariate time-series anomaly detection
is challenging because real-world time-series data exhibit complex temporal
dependencies. For this task, it is crucial to learn a rich representation that
effectively contains the nonlinear temporal dynamics of normal behavior. In
this study, we propose an unsupervised multivariate time-series anomaly
detection model named RAE-MEPC which learns informative normal representations
based on multi-resolution ensemble and predictive coding. We introduce
multi-resolution ensemble encoding to capture the multi-scale dependency from
the input time series. The encoder hierarchically aggregates the temporal
features extracted from the sub-encoders with different encoding lengths. From
these encoded features, the reconstruction decoder reconstructs the input time
series based on multi-resolution ensemble decoding where lower-resolution
information helps to decode sub-decoders with higher-resolution outputs.
Predictive coding is further introduced to encourage the model to learn the
temporal dependencies of the time series. Experiments on real-world benchmark
datasets show that the proposed model outperforms the benchmark models for
multivariate time-series anomaly detection.
Related papers
- Rough Transformers for Continuous and Efficient Time-Series Modelling [46.58170057001437]
Time-series data in real-world medical settings typically exhibit long-range dependencies and are observed at non-uniform intervals.
We introduce the Rough Transformer, a variation of the Transformer model which operates on continuous-time representations of input sequences.
We find that Rough Transformers consistently outperform their vanilla attention counterparts while obtaining the benefits of Neural ODE-based models.
arXiv Detail & Related papers (2024-03-15T13:29:45Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
Anomaly detection in time-series data is crucial for identifying faults, failures, threats, and outliers across a range of applications.
Recently, deep learning techniques have been applied to this topic, but they often struggle in real-world scenarios.
We propose Distribution-Augmented Contrastive Reconstruction (DACR) to tackle these challenges.
arXiv Detail & Related papers (2024-01-20T16:56:52Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
We propose a novel anomaly detection method, named EdgeConvFormer, which integrates stacked Time2vec embedding, dynamic graph CNN, and Transformer to extract global and local spatial-time information.
Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal modeling from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.
arXiv Detail & Related papers (2023-12-04T08:38:54Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - TFAD: A Decomposition Time Series Anomaly Detection Architecture with
Time-Frequency Analysis [12.867257563413972]
Time series anomaly detection is a challenging problem due to the complex temporal dependencies and the limited label data.
We propose a Time-Frequency analysis based time series Anomaly Detection model, or TFAD, to exploit both time and frequency domains for performance improvement.
arXiv Detail & Related papers (2022-10-18T09:08:57Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
We propose an unsupervised Attention-based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis.
The framework starts by pre-processing and enriching the data, before constructing feature images to characterize the system statuses.
The constructed feature images are fed into an attention-based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the temporal behavior.
The reconstruction errors are then computed and subjected to a statistical-based, dynamic thresholding mechanism to detect and diagnose the anomalies
arXiv Detail & Related papers (2022-01-23T04:01:43Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.