An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series
- URL: http://arxiv.org/abs/2201.09172v1
- Date: Sun, 23 Jan 2022 04:01:43 GMT
- Title: An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series
- Authors: Tareq Tayeh, Sulaiman Aburakhia, Ryan Myers, Abdallah Shami
- Abstract summary: We propose an unsupervised Attention-based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis.
The framework starts by pre-processing and enriching the data, before constructing feature images to characterize the system statuses.
The constructed feature images are fed into an attention-based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the temporal behavior.
The reconstruction errors are then computed and subjected to a statistical-based, dynamic thresholding mechanism to detect and diagnose the anomalies
- Score: 2.9685635948299995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a substantial amount of multivariate time series data is being produced by
the complex systems in Smart Manufacturing, improved anomaly detection
frameworks are needed to reduce the operational risks and the monitoring burden
placed on the system operators. However, building such frameworks is
challenging, as a sufficiently large amount of defective training data is often
not available and frameworks are required to capture both the temporal and
contextual dependencies across different time steps while being robust to
noise. In this paper, we propose an unsupervised Attention-based Convolutional
Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding
(ACLAE-DT) framework for anomaly detection and diagnosis in multivariate time
series. The framework starts by pre-processing and enriching the data, before
constructing feature images to characterize the system statuses across
different time steps by capturing the inter-correlations between pairs of time
series. Afterwards, the constructed feature images are fed into an
attention-based ConvLSTM autoencoder, which aims to encode the constructed
feature images and capture the temporal behavior, followed by decoding the
compressed knowledge representation to reconstruct the feature images input.
The reconstruction errors are then computed and subjected to a
statistical-based, dynamic thresholding mechanism to detect and diagnose the
anomalies. Evaluation results conducted on real-life manufacturing data
demonstrate the performance strengths of the proposed approach over
state-of-the-art methods under different experimental settings.
Related papers
- Training-Free Time-Series Anomaly Detection: Leveraging Image Foundation Models [0.0]
We propose an image-based, training-free time-series anomaly detection (ITF-TAD) approach.
ITF-TAD converts time-series data into images using wavelet transform and compresses them into a single representation, leveraging image foundation models for anomaly detection.
arXiv Detail & Related papers (2024-08-27T03:12:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Denoising Architecture for Unsupervised Anomaly Detection in Time-Series [0.0]
We introduce the Denoising Architecture as a complement to this LSTM-Decoder model.
We demonstrate that the proposed architecture increases both the accuracy and the training speed, thereby, making the LSTM Autoencoder more efficient for unsupervised anomaly detection tasks.
arXiv Detail & Related papers (2022-08-30T15:23:45Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive
Coding for Multivariate Time-Series Anomaly Detection [3.772827533440353]
Real-world time-series data exhibit complex temporal dependencies.
RAE-M EPC learns informative normal representations based on multi-resolution ensemble and predictive coding.
Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models.
arXiv Detail & Related papers (2022-02-21T05:47:22Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
We propose an unsupervised time series anomaly detection framework in a federated fashion.
We leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model.
Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models.
arXiv Detail & Related papers (2021-08-18T22:23:15Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFI builds multivariate feature interaction graph automatically and uses the graph convolutional neural network to achieve high-order feature interactions.
Experiments on three publicly available datasets demonstrate the superiority of our framework compared with state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-11T04:57:03Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.