論文の概要: Offline Text-Independent Writer Identification based on word level data
- arxiv url: http://arxiv.org/abs/2202.10207v1
- Date: Mon, 21 Feb 2022 13:32:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 13:56:31.100580
- Title: Offline Text-Independent Writer Identification based on word level data
- Title(参考訳): 単語レベルデータに基づくオフラインテキスト非依存ライタ識別
- Authors: Vineet Kumar and Suresh Sundaram
- Abstract要約: 本稿では,個人の手書き入力語画像に基づいて,文書の著者を識別する新しい手法を提案する。
SIFTアルゴリズムを用いて、様々な抽象化レベルにおいて複数のキーポイントを抽出する。
これらのキーポイントはトレーニングされたCNNネットワークに渡され、畳み込み層に対応する特徴マップを生成する。
- 参考スコア(独自算出の注目度): 7.747239584541488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel scheme to identify the authorship of a document
based on handwritten input word images of an individual. Our approach is
text-independent and does not place any restrictions on the size of the input
word images under consideration. To begin with, we employ the SIFT algorithm to
extract multiple key points at various levels of abstraction (comprising
allograph, character, or combination of characters). These key points are then
passed through a trained CNN network to generate feature maps corresponding to
a convolution layer. However, owing to the scale corresponding to the SIFT key
points, the size of a generated feature map may differ. As an alleviation to
this issue, the histogram of gradients is applied on the feature map to produce
a fixed representation. Typically, in a CNN, the number of filters of each
convolution block increase depending on the depth of the network. Thus,
extracting histogram features for each of the convolution feature map increase
the dimension as well as the computational load. To address this aspect, we use
an entropy-based method to learn the weights of the feature maps of a
particular CNN layer during the training phase of our algorithm. The efficacy
of our proposed system has been demonstrated on two publicly available
databases namely CVL and IAM. We empirically show that the results obtained are
promising when compared with previous works.
- Abstract(参考訳): 本稿では,個人の手書き入力語画像に基づいて,文書の著者を識別する新しい手法を提案する。
提案手法はテキスト非依存であり、検討中の入力語画像のサイズに制限を課さない。
まず、SIFTアルゴリズムを用いて、様々な抽象レベル(アログラフ、文字、文字の組み合わせを含む)の複数のキーポイントを抽出する。
これらのキーポイントはトレーニングされたcnnネットワークを通過し、畳み込み層に対応する特徴マップを生成する。
しかし、SIFTキーポイントに対応するスケールのため、生成された特徴写像のサイズが異なる場合がある。
この問題に対する緩和として、勾配のヒストグラムを特徴写像に適用して固定表現を生成する。
通常、CNNでは、ネットワークの深さに応じて、各畳み込みブロックのフィルタ数が増加する。
これにより、畳み込み特徴マップ毎にヒストグラム特徴を抽出することにより、計算負荷だけでなく寸法が増大する。
この側面に対処するために,アルゴリズムのトレーニングフェーズにおいて,特定のCNN層の特徴写像の重み付けをエントロピー法を用いて学習する。
本システムの有効性は,CVL と IAM の2つの公開データベース上で実証されている。
得られた結果が,従来の作品と比較して有望であることを実証的に示す。
関連論文リスト
- Attention based End to end network for Offline Writer Identification on Word level data [3.5829161769306244]
注意駆動型畳み込みニューラルネットワーク(CNN)に基づく著者識別システムを提案する。
このシステムは、単語画像から抽出された断片として知られる画像セグメントを利用して、ピラミッドベースの戦略を用いて訓練されている。
提案アルゴリズムの有効性を3つのベンチマークデータベースで評価した。
論文 参考訳(メタデータ) (2024-04-11T09:41:14Z) - Representing 3D sparse map points and lines for camera relocalization [1.2974519529978974]
軽量ニューラルネットワークが3Dポイントとラインの両方の特徴を表現するためにどのように学習できるかを示す。
テストにおいて,本手法は,最先端の学習手法に対する最も顕著な向上を図っている。
論文 参考訳(メタデータ) (2024-02-28T03:07:05Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Siamese based Neural Network for Offline Writer Identification on word
level data [7.747239584541488]
入力語画像に基づいて文書の著者を特定する新しい手法を提案する。
本手法はテキスト独立であり,入力画像のサイズに制約を課さない。
論文 参考訳(メタデータ) (2022-11-17T10:01:46Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - TextConvoNet:A Convolutional Neural Network based Architecture for Text
Classification [0.34410212782758043]
CNNベースのアーキテクチャTextConvoNetは、文内n-gram特徴を抽出するだけでなく、入力されたテキストデータ中の文間n-gram特徴をキャプチャする。
実験の結果,提案したTextConvoNetは,テキスト分類のための最先端の機械学習モデルやディープラーニングモデルよりも優れていた。
論文 参考訳(メタデータ) (2022-03-10T06:09:56Z) - Multi-level Second-order Few-shot Learning [111.0648869396828]
教師付きまたは教師なしの少数ショット画像分類と少数ショット動作認識のためのマルチレベル2次数列学習ネットワーク(MlSo)を提案する。
我々は、パワーノーマライズされた二階学習者ストリームと、複数のレベルの視覚的抽象化を表現する機能を組み合わせた、いわゆる2階学習者ストリームを活用している。
我々は,Omniglot, mini-ImageNet, tiered-ImageNet, Open MIC, CUB Birds, Stanford Dogs, Cars, HMDB51, UCF101, mini-MITなどのアクション認識データセットなどの標準データセットに対して,優れた結果を示す。
論文 参考訳(メタデータ) (2022-01-15T19:49:00Z) - Multi-Scale Feature Fusion: Learning Better Semantic Segmentation for
Road Pothole Detection [9.356003255288417]
本稿では,単一モーダルなセマンティックセグメンテーションに基づく新しいポットホール検出手法を提案する。
まず、畳み込みニューラルネットワークを用いて入力画像から視覚的特徴を抽出する。
チャネルアテンションモジュールは、異なるフィーチャーマップの一貫性を高めるために、チャネル機能を再考する。
論文 参考訳(メタデータ) (2021-12-24T15:07:47Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
ビデオベースの人物再識別(re-ID)は、異なるカメラで捉えた人々のビデオスニペットをマッチングすることを目的とした、視覚監視システムにおいて重要な技術である。
既存の手法は主に畳み込みニューラルネットワーク(CNN)に基づいており、そのビルディングブロックは近隣のピクセルを一度に処理するか、あるいは3D畳み込みが時間情報のモデル化に使用される場合、人の動きによって生じるミスアライメントの問題に悩まされる。
本稿では,人間指向グラフ法を用いて,通常の畳み込みの限界を克服することを提案する。具体的には,人手指のキーポイントに位置する特徴を抽出し,時空間グラフとして接続する。
論文 参考訳(メタデータ) (2021-11-16T08:01:16Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z) - Expressing Objects just like Words: Recurrent Visual Embedding for
Image-Text Matching [102.62343739435289]
既存の画像テキストマッチングアプローチは、テキストと画像の各独立オブジェクト間の親和性をキャプチャして集約することにより、画像テキストペアの類似性を推測する。
本稿では,リカレントニューラルネットワーク(RNN)を用いて画像と文を対称に処理するDual Path Recurrent Neural Network (DP-RNN)を提案する。
我々のモデルはFlickr30Kデータセットの最先端性能とMS-COCOデータセットの競合性能を達成する。
論文 参考訳(メタデータ) (2020-02-20T00:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。