PointSCNet: Point Cloud Structure and Correlation Learning Based on Space Filling Curve-Guided Sampling
- URL: http://arxiv.org/abs/2202.10251v2
- Date: Fri, 14 Jun 2024 15:25:30 GMT
- Title: PointSCNet: Point Cloud Structure and Correlation Learning Based on Space Filling Curve-Guided Sampling
- Authors: Xingye Chen, Yiqi Wu, Wenjie Xu, Jin Li, Huaiyi Dong, Yilin Chen,
- Abstract summary: This paper proposes a point cloud feature extraction network named PointSCNet.
It captures the geometrical structure information and local region correlation information of a point cloud.
The experimental results demonstrate that the PointSCNet outperforms or is on par with state-of-the-art methods by learning the structure and correlation of point clouds effectively.
- Score: 9.051430628938592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometrical structures and the internal local region relationship, such as symmetry, regular array, junction, etc., are essential for understanding a 3D shape. This paper proposes a point cloud feature extraction network named PointSCNet, to capture the geometrical structure information and local region correlation information of a point cloud. The PointSCNet consists of three main modules: the space-filling curve-guided sampling module, the information fusion module, and the channel-spatial attention module. The space-filling curve-guided sampling module uses Z-order curve coding to sample points that contain geometrical correlation. The information fusion module uses a correlation tensor and a set of skip connections to fuse the structure and correlation information. The channel-spatial attention module enhances the representation of key points and crucial feature channels to refine the network. The proposed PointSCNet is evaluated on shape classification and part segmentation tasks. The experimental results demonstrate that the PointSCNet outperforms or is on par with state-of-the-art methods by learning the structure and correlation of point clouds effectively.
Related papers
- LoGDesc: Local geometric features aggregation for robust point cloud registration [4.888434990566421]
This paper introduces a new hybrid descriptor for 3D point matching and point cloud registration.
It combines local geometrical properties and learning-based feature propagation for each point's neighborhood structure description.
arXiv Detail & Related papers (2024-10-03T12:11:22Z) - Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
We propose a learning-based framework for non-rigid point cloud matching.
Key insight is to incorporate semantic features derived from large vision models (LVMs)
Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries.
arXiv Detail & Related papers (2024-08-16T07:02:19Z) - Local region-learning modules for point cloud classification [0.0]
We present two local region-learning modules that infer the appropriate shift for each center point and alter the radius of each local region.
We integrated both modules independently and together to the PointNet++ and PointCNN object classification architectures.
Our experiments on ShapeNet data set showed that the modules are also effective on 3D CAD models.
arXiv Detail & Related papers (2023-03-30T12:45:46Z) - Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis [118.30840667784206]
Key issue for point cloud data processing is extracting useful information from local regions.
Previous works ignore the relation between edges in local regions, which encodes the local shape information.
This paper proposes a novel Adaptive Edge-to-Edge Interaction Learning module.
arXiv Detail & Related papers (2022-11-20T07:10:14Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
We propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map.
A 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud.
A point cloud upsampling network is used to generate dense point cloud from the partial input and the coarse intermediate output.
arXiv Detail & Related papers (2022-02-17T10:59:40Z) - PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis [56.91758845045371]
We propose a novel framework named Point Relation-Aware Network (PRA-Net)
It is composed of an Intra-region Structure Learning (ISL) module and an Inter-region Relation Learning (IRL) module.
Experiments on several 3D benchmarks covering shape classification, keypoint estimation, and part segmentation have verified the effectiveness and the ability of PRA-Net.
arXiv Detail & Related papers (2021-12-09T13:24:43Z) - Deep Positional and Relational Feature Learning for Rotation-Invariant
Point Cloud Analysis [107.9979381402172]
We propose a rotation-invariant deep network for point clouds analysis.
The network is hierarchical and relies on two modules: a positional feature embedding block and a relational feature embedding block.
Experiments show state-of-the-art classification and segmentation performances on benchmark datasets.
arXiv Detail & Related papers (2020-11-18T04:16:51Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - ASAP-Net: Attention and Structure Aware Point Cloud Sequence
Segmentation [49.15948235059343]
We further improve point-temporal cloud feature with a flexible module called ASAP.
Our ASAP module contains an attentive temporal embedding layer to fuse the relatively informative local features across frames in a recurrent fashion.
We show the generalization ability of the proposed ASAP module with different computation backbone networks for point cloud sequence segmentation.
arXiv Detail & Related papers (2020-08-12T07:37:16Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
Point cloud is a principal data structure adopted for 3D geometric information encoding.
Shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point.
arXiv Detail & Related papers (2020-04-20T16:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.