論文の概要: Integration of knowledge and data in machine learning
- arxiv url: http://arxiv.org/abs/2202.10337v1
- Date: Tue, 15 Feb 2022 10:35:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-27 17:00:39.757350
- Title: Integration of knowledge and data in machine learning
- Title(参考訳): 機械学習における知識とデータの統合
- Authors: Yuntian Chen, Dongxiao Zhang
- Abstract要約: 知識の埋め込みを通じて、知識とデータの障壁を破り、物理的な常識を持つ機械学習モデルを形成することができる。
知識発見は機械学習を利用して観察から新しい知識を抽出する。
本研究は,既存の文献を要約・分析するだけでなく,研究のギャップと今後の可能性も提案する。
- 参考スコア(独自算出の注目度): 0.456877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific research's duty and goal is to comprehend and explore the world,
as well as to modify it based on experience and knowledge. Knowledge embedding
and knowledge discovery are two significant methods of integrating knowledge
and data. Through knowledge embedding, the barriers between knowledge and data
can be broken, and machine learning models with physical common sense can be
formed. Meanwhile, humans' understanding of the world is always limited, and
knowledge discovery takes advantage of machine learning to extract new
knowledge from observations. Not only may knowledge discovery help researchers
better grasp the nature of physics, but it can also help them conduct knowledge
embedding research. A closed loop of knowledge generation and usage are formed
by combining knowledge embedding with knowledge discovery, which can improve
the robustness and accuracy of the model and uncover unknown scientific
principles. This study not only summarizes and analyzes the existing
literature, but also proposes research gaps and future opportunities.
- Abstract(参考訳): 科学研究の義務と目標は、世界を理解し、探求することと、経験と知識に基づいてそれを修正することである。
知識埋め込みと知識発見は、知識とデータを統合する2つの重要な方法である。
知識の埋め込みを通じて、知識とデータの障壁を破り、物理的な常識を持つ機械学習モデルを形成することができる。
一方、人間の世界に対する理解は常に限られており、知識発見は機械学習を利用して観察から新しい知識を抽出する。
知識発見は、研究者が物理学の性質をよりよく把握するのに役立つだけでなく、知識埋め込み研究を行うのにも役立つ。
知識生成と使用のクローズドループは、知識発見と組み合わさって形成され、モデルの堅牢性と正確性を改善し、未知の科学的原理を明らかにする。
本研究は,既存の文献を要約・分析するだけでなく,研究のギャップと今後の可能性も提案する。
関連論文リスト
- Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
本稿では,知識利用と進化を含む新しい分類法から知識メカニズムの解析をレビューする。
LLMが学んだ知識、パラメトリック知識の脆弱性の理由、そして解決が難しい潜在的な暗黒知識(仮説)について論じる。
論文 参考訳(メタデータ) (2024-07-22T06:15:59Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - From task structures to world models: What do LLMs know? [0.0]
大規模言語モデルにはどのような意味があるのでしょうか?
我々は LLM に「制度的な知識」を与えることで答える。
そして、そのような知識が、人間のエージェントによって提示されるより普通の「現実的な」知識とどのように関連しているかを問う。
論文 参考訳(メタデータ) (2023-10-06T14:21:59Z) - Worth of knowledge in deep learning [3.132595571344153]
我々は、知識の価値を評価するために、解釈可能な機械学習にインスパイアされたフレームワークを提案する。
我々の研究結果は、依存、相乗効果、置換効果を含む、データと知識の複雑な関係を解明する。
我々のモデルに依存しないフレームワークは、様々な共通ネットワークアーキテクチャに適用でき、ディープラーニングモデルにおける事前知識の役割を包括的に理解することができる。
論文 参考訳(メタデータ) (2023-07-03T02:25:19Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
本稿では,既存のモデル(バックボーン)を明示的な知識学習によって原則的に拡張する枠組みを提案する。
LeApでは,新しい問題知識表現パラダイムで知識学習を行う。
LeApはすべてのバックボーンのパフォーマンスを改善し、正確な知識を習得し、より解釈可能な推論プロセスを実現する。
論文 参考訳(メタデータ) (2023-02-11T15:15:41Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - KnowledgeShovel: An AI-in-the-Loop Document Annotation System for
Scientific Knowledge Base Construction [46.56643271476249]
KnowledgeShovelは、研究者が科学的知識基盤を構築するための、Al-in-the-Loop文書アノテーションシステムである。
KnowledgeShovelの設計では、多段階のマルチモーダルAIコラボレーションパイプラインを導入し、データの正確性を向上し、人的負担を軽減する。
7つの地学研究者によるフォローアップユーザ評価では、知識ショベルは、十分な精度で科学的知識ベースを効率的に構築できることを示している。
論文 参考訳(メタデータ) (2022-10-06T11:38:18Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
複数のニューラルネットワークからインポートされた知識を格納できる継続的知識基盤を構築する方法を提案する。
テキスト分類実験は有望な結果を示す。
我々は複数のモデルから知識ベースに知識をインポートし、そこから融合した知識を単一のモデルにエクスポートする。
論文 参考訳(メタデータ) (2020-12-25T12:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。