論文の概要: Rule Mining over Knowledge Graphs via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2202.10381v1
- Date: Mon, 21 Feb 2022 17:18:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 08:40:47.465528
- Title: Rule Mining over Knowledge Graphs via Reinforcement Learning
- Title(参考訳): 強化学習による知識グラフ上のルールマイニング
- Authors: Lihan Chen, Sihang Jiang, Jingping Liu, Chao Wang, Sheng Zhang,
Chenhao Xie, Jiaqing Liang, Yanghua Xiao and Rui Song
- Abstract要約: 本稿では,強化学習による世代評価ルールマイニング手法を提案する。
第1フェーズは、知識グラフからルール生成のための強化学習エージェントをトレーニングすることを目的としている。
2つ目は、エージェントの値関数を利用して、ステップバイステップのルール生成をガイドすることである。
- 参考スコア(独自算出の注目度): 27.168894658354954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs (KGs) are an important source repository for a wide range of
applications and rule mining from KGs recently attracts wide research interest
in the KG-related research community. Many solutions have been proposed for the
rule mining from large-scale KGs, which however are limited in the inefficiency
of rule generation and ineffectiveness of rule evaluation. To solve these
problems, in this paper we propose a generation-then-evaluation rule mining
approach guided by reinforcement learning. Specifically, a two-phased framework
is designed. The first phase aims to train a reinforcement learning agent for
rule generation from KGs, and the second is to utilize the value function of
the agent to guide the step-by-step rule generation. We conduct extensive
experiments on several datasets and the results prove that our rule mining
solution achieves state-of-the-art performance in terms of efficiency and
effectiveness.
- Abstract(参考訳): 知識グラフ(KGs)は、幅広い応用のための重要な資料リポジトリであり、KGsからのルールマイニングは、最近KG関連の研究コミュニティで広く研究されている。
大規模kgからのルールマイニングには多くの解決策が提案されているが、ルール生成の非効率性やルール評価の非効率性に制限がある。
本稿では,これらの問題を解決するために,強化学習による世代評価ルールマイニング手法を提案する。
具体的には、二相フレームワークを設計する。
第1フェーズは、kgsからルール生成のための強化学習エージェントを訓練することであり、第2フェーズは、エージェントの値関数を利用して、ステップバイステップのルール生成を導くことである。
我々は,いくつかのデータセットについて広範な実験を行い,その結果から,ルールマイニングソリューションが効率と有効性の観点から最先端の性能を達成できることを証明した。
関連論文リスト
- Learning Rules from KGs Guided by Language Models [48.858741745144044]
ルール学習手法は、潜在的に欠落する事実を予測するために適用することができる。
規則のランク付けは、高度に不完全あるいは偏りのあるKGよりも特に難しい。
近年のLanguage Models (LM) の台頭により、いくつかの研究が、LMがKG補完の代替手段として利用できると主張している。
論文 参考訳(メタデータ) (2024-09-12T09:27:36Z) - Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings [3.7759315989669058]
汎用KGを用いた小規模ドメイン固有知識グラフの埋め込みを充実させるフレームワークを提案する。
実験では、Hits@10測定値で最大44%の上昇が観測された。
この比較的探索されていない研究方向は、知識集約的なタスクにおいて、KGのより頻繁な取り込みを触媒することができる。
論文 参考訳(メタデータ) (2024-05-17T12:46:23Z) - Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
本研究は,情報指向サンプリング(IDS)の原理に基づくマルチエージェント強化学習(MARL)のための新しいアルゴリズムの設計と解析を行う。
エピソディックな2プレーヤゼロサムMGに対して、ナッシュ平衡を学習するための3つのサンプル効率アルゴリズムを提案する。
我々は、Reg-MAIDSをマルチプレイヤー汎用MGに拡張し、ナッシュ平衡または粗相関平衡をサンプル効率良く学習できることを証明する。
論文 参考訳(メタデータ) (2024-04-30T06:48:56Z) - Enhancing Multi-Hop Knowledge Graph Reasoning through Reward Shaping
Techniques [5.561202401558972]
本研究は,マルチホップ知識グラフ(KG-R)に内在する複雑さをナビゲートするための強化学習戦略,特にREINFORCEアルゴリズムの活用について検討する。
UMLS(Unified Medical Language System)ベンチマークデータセットをリッチでスパースなサブセットに分割することにより、トレーニング済みBERT埋め込みとPrompt Learning手法の有効性を検証し、報酬形成プロセスを洗練させる。
論文 参考訳(メタデータ) (2024-03-09T05:34:07Z) - ChatRule: Mining Logical Rules with Large Language Models for Knowledge
Graph Reasoning [107.61997887260056]
そこで我々は,知識グラフ上の論理ルールをマイニングするための大規模言語モデルの力を解き放つ新しいフレームワークChatRuleを提案する。
具体的には、このフレームワークは、KGのセマンティック情報と構造情報の両方を活用するLLMベースのルールジェネレータで開始される。
生成されたルールを洗練させるために、ルールランキングモジュールは、既存のKGから事実を取り入れてルール品質を推定する。
論文 参考訳(メタデータ) (2023-09-04T11:38:02Z) - Knowledge Reasoning via Jointly Modeling Knowledge Graphs and Soft Rules [17.301284626706856]
知識グラフ補完法(KGC)は、ルールベースの推論と埋め込みベースの推論の2つの主要なカテゴリに分類される。
本稿では,ルールを注入し,反復的に表現を学習し,ルールと埋め込みを最大限に活用する手法を提案する。
論文 参考訳(メタデータ) (2023-01-07T05:24:29Z) - Lexicographic Multi-Objective Reinforcement Learning [65.90380946224869]
このような問題を解決するために,アクション値アルゴリズムとポリシー勾配アルゴリズムの両方のファミリを提案する。
エージェントの動作に安全制約を課すのに我々のアルゴリズムをどのように使用できるかを示し、この文脈でのそれらの性能を他の制約付き強化学習アルゴリズムと比較する。
論文 参考訳(メタデータ) (2022-12-28T10:22:36Z) - Towards Target Sequential Rules [52.4562332499155]
ターゲット・シーケンシャル・ルール・マイニング(TaSRM)と呼ばれる効率的なアルゴリズムを提案する。
新たなアルゴリズムであるTaSRMとその変種は,既存のベースラインアルゴリズムと比較して実験性能がよいことを示す。
論文 参考訳(メタデータ) (2022-06-09T18:59:54Z) - Scalable Deep Reinforcement Learning Algorithms for Mean Field Games [60.550128966505625]
平均フィールドゲーム (MFGs) は、非常に多くの戦略エージェントを持つゲームを効率的に近似するために導入された。
近年,モデルフリー強化学習(RL)手法を用いて,MFGの学習均衡の課題が活発化している。
MFGを解くための既存のアルゴリズムは戦略や$q$-valuesのような近似量の混合を必要とする。
本稿では,この欠点に対処する2つの手法を提案する。まず,歴史データの蒸留からニューラルネットワークへの混合戦略を学習し,Factitious Playアルゴリズムに適用する。
2つ目はオンライン混合方式である。
論文 参考訳(メタデータ) (2022-03-22T18:10:32Z) - Building Rule Hierarchies for Efficient Logical Rule Learning from
Knowledge Graphs [20.251630903853016]
本稿では,ルール階層を用いて非プロミッシングルールを抽出する新しい手法を提案する。
HPMの応用は非プロムルールの除去に有効であることを示す。
論文 参考訳(メタデータ) (2020-06-29T16:33:30Z) - Towards Learning Instantiated Logical Rules from Knowledge Graphs [20.251630903853016]
本稿では,知識グラフから一階述語論理規則を抽出するために最適化された確率論的学習ルールGPFLを提案する。
GPFLは、抽出された経路を非循環的な抽象規則であるテンプレートに一般化する新しい2段階ルール生成機構を利用する。
オーバーフィッティングルールの存在、予測性能への影響、およびオーバーフィッティングルールをフィルタリングする単純なバリデーション手法の有効性を明らかにする。
論文 参考訳(メタデータ) (2020-03-13T00:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。