On the Effectiveness of Adversarial Training against Backdoor Attacks
- URL: http://arxiv.org/abs/2202.10627v1
- Date: Tue, 22 Feb 2022 02:24:46 GMT
- Title: On the Effectiveness of Adversarial Training against Backdoor Attacks
- Authors: Yinghua Gao, Dongxian Wu, Jingfeng Zhang, Guanhao Gan, Shu-Tao Xia,
Gang Niu, Masashi Sugiyama
- Abstract summary: A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
- Score: 111.8963365326168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DNNs' demand for massive data forces practitioners to collect data from the
Internet without careful check due to the unacceptable cost, which brings
potential risks of backdoor attacks. A backdoored model always predicts a
target class in the presence of a predefined trigger pattern, which can be
easily realized via poisoning a small amount of data. In general, adversarial
training is believed to defend against backdoor attacks since it helps models
to keep their prediction unchanged even if we perturb the input image (as long
as within a feasible range). Unfortunately, few previous studies succeed in
doing so. To explore whether adversarial training could defend against backdoor
attacks or not, we conduct extensive experiments across different threat models
and perturbation budgets, and find the threat model in adversarial training
matters. For instance, adversarial training with spatial adversarial examples
provides notable robustness against commonly-used patch-based backdoor attacks.
We further propose a hybrid strategy which provides satisfactory robustness
across different backdoor attacks.
Related papers
- Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
Deep Neural Networks (DNNs) are known to be vulnerable to both backdoor and adversarial attacks.
This paper reveals that there is an intriguing connection between backdoor and adversarial attacks.
A novel Progressive Unified Defense algorithm is proposed to defend against backdoor and adversarial attacks simultaneously.
arXiv Detail & Related papers (2024-05-28T07:50:00Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
Data-poisoning backdoor attacks are serious security threats to machine learning models.
In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned.
We propose a novel defense approach called PDB (Proactive Defensive Backdoor)
arXiv Detail & Related papers (2024-05-25T07:52:26Z) - Rethinking Backdoor Attacks [122.1008188058615]
In a backdoor attack, an adversary inserts maliciously constructed backdoor examples into a training set to make the resulting model vulnerable to manipulation.
Defending against such attacks typically involves viewing these inserted examples as outliers in the training set and using techniques from robust statistics to detect and remove them.
We show that without structural information about the training data distribution, backdoor attacks are indistinguishable from naturally-occurring features in the data.
arXiv Detail & Related papers (2023-07-19T17:44:54Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Contributor-Aware Defenses Against Adversarial Backdoor Attacks [2.830541450812474]
adversarial backdoor attacks have demonstrated the capability to perform targeted misclassification of specific examples.
We propose a contributor-aware universal defensive framework for learning in the presence of multiple, potentially adversarial data sources.
Our empirical studies demonstrate the robustness of the proposed framework against adversarial backdoor attacks from multiple simultaneous adversaries.
arXiv Detail & Related papers (2022-05-28T20:25:34Z) - Backdoors Stuck At The Frontdoor: Multi-Agent Backdoor Attacks That
Backfire [8.782809316491948]
We investigate a multi-agent backdoor attack scenario, where multiple attackers attempt to backdoor a victim model simultaneously.
A consistent backfiring phenomenon is observed across a wide range of games, where agents suffer from a low collective attack success rate.
The results motivate the re-evaluation of backdoor defense research for practical environments.
arXiv Detail & Related papers (2022-01-28T16:11:40Z) - Widen The Backdoor To Let More Attackers In [24.540853975732922]
We investigate the scenario of a multi-agent backdoor attack, where multiple non-colluding attackers craft and insert triggered samples in a shared dataset.
We discover a clear backfiring phenomenon: increasing the number of attackers shrinks each attacker's attack success rate.
We then exploit this phenomenon to minimize the collective ASR of attackers and maximize defender's robustness accuracy.
arXiv Detail & Related papers (2021-10-09T13:53:57Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.