Untargeted Backdoor Attack against Object Detection
- URL: http://arxiv.org/abs/2211.05638v1
- Date: Wed, 2 Nov 2022 17:05:45 GMT
- Title: Untargeted Backdoor Attack against Object Detection
- Authors: Chengxiao Luo, Yiming Li, Yong Jiang, Shu-Tao Xia
- Abstract summary: We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
- Score: 69.63097724439886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies revealed that deep neural networks (DNNs) are exposed to
backdoor threats when training with third-party resources (such as training
samples or backbones). The backdoored model has promising performance in
predicting benign samples, whereas its predictions can be maliciously
manipulated by adversaries based on activating its backdoors with pre-defined
trigger patterns. Currently, most of the existing backdoor attacks were
conducted on the image classification under the targeted manner. In this paper,
we reveal that these threats could also happen in object detection, posing
threatening risks to many mission-critical applications ($e.g.$, pedestrian
detection and intelligent surveillance systems). Specifically, we design a
simple yet effective poison-only backdoor attack in an untargeted manner, based
on task characteristics. We show that, once the backdoor is embedded into the
target model by our attack, it can trick the model to lose detection of any
object stamped with our trigger patterns. We conduct extensive experiments on
the benchmark dataset, showing its effectiveness in both digital and
physical-world settings and its resistance to potential defenses.
Related papers
- Attacking by Aligning: Clean-Label Backdoor Attacks on Object Detection [24.271795745084123]
Deep neural networks (DNNs) have shown unprecedented success in object detection tasks.
Backdoor attacks on object detection tasks have not been properly investigated and explored.
We propose a simple yet effective backdoor attack method against object detection without modifying the ground truth annotations.
arXiv Detail & Related papers (2023-07-19T22:46:35Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - SATBA: An Invisible Backdoor Attack Based On Spatial Attention [7.405457329942725]
Backdoor attacks involve the training of Deep Neural Network (DNN) on datasets that contain hidden trigger patterns.
Most existing backdoor attacks suffer from two significant drawbacks: their trigger patterns are visible and easy to detect by backdoor defense or even human inspection.
We propose a novel backdoor attack named SATBA that overcomes these limitations using spatial attention and an U-net based model.
arXiv Detail & Related papers (2023-02-25T10:57:41Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - BadDet: Backdoor Attacks on Object Detection [42.40418007499009]
We propose four kinds of backdoor attacks for object detection task.
A trigger can falsely generate an object of the target class.
A single trigger can change the predictions of all objects in an image to the target class.
arXiv Detail & Related papers (2022-05-28T18:02:11Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.