論文の概要: Combining the Silhouette and Skeleton Data for Gait Recognition
- arxiv url: http://arxiv.org/abs/2202.10645v3
- Date: Fri, 24 Mar 2023 07:14:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 19:02:28.368780
- Title: Combining the Silhouette and Skeleton Data for Gait Recognition
- Title(参考訳): 歩行認識のためのシルエットと骨格データの組み合わせ
- Authors: Likai Wang, Ruize Han, Wei Feng
- Abstract要約: 2つの主要な歩行認識作品は外観ベースとモデルベースであり、シルエットと骨格からそれぞれ特徴を抽出する。
本稿では, シルエットを入力とするCNN系分岐と, 骨格を入力とするGCN系分岐を提案する。
GCNベースの分岐における歩行表現を改善するため、マルチスケールグラフ畳み込みを統合する完全連結グラフ畳み込み演算子を提案する。
- 参考スコア(独自算出の注目度): 13.345465199699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gait recognition, a long-distance biometric technology, has aroused intense
interest recently. Currently, the two dominant gait recognition works are
appearance-based and model-based, which extract features from silhouettes and
skeletons, respectively. However, appearance-based methods are greatly affected
by clothes-changing and carrying conditions, while model-based methods are
limited by the accuracy of pose estimation. To tackle this challenge, a simple
yet effective two-branch network is proposed in this paper, which contains a
CNN-based branch taking silhouettes as input and a GCN-based branch taking
skeletons as input. In addition, for better gait representation in the
GCN-based branch, we present a fully connected graph convolution operator to
integrate multi-scale graph convolutions and alleviate the dependence on
natural joint connections. Also, we deploy a multi-dimension attention module
named STC-Att to learn spatial, temporal and channel-wise attention
simultaneously. The experimental results on CASIA-B and OUMVLP show that our
method achieves state-of-the-art performance in various conditions.
- Abstract(参考訳): 長距離バイオメトリック技術である歩行認識は近年、強い関心を集めている。
現在、主要な2つの歩行認識作業は外観ベースとモデルベースであり、それぞれシルエットと骨格から特徴を抽出する。
しかし, 着替えや搬送条件では外観ベースが大きな影響を受け, モデルベースではポーズ推定の精度が制限される。
そこで,本研究では,シルエットを入力とするcnn系分枝と,スケルトンを入力とするgcn系分枝を含む,簡便かつ効果的な二分枝ネットワークを提案する。
さらに,GCN系分岐における歩行表現の改善のために,マルチスケールグラフ畳み込みを統合する完全連結グラフ畳み込み演算子を提案し,自然関節接続への依存を軽減する。
また,stc-attと呼ばれる多次元アテンションモジュールを配置し,空間的,時間的,チャネル的アテンションを同時に学習する。
CASIA-BとOUMVLPの実験結果から, 各種条件下での最先端性能が得られた。
関連論文リスト
- GaitMA: Pose-guided Multi-modal Feature Fusion for Gait Recognition [26.721242606715354]
歩行認識は、歩行パターンを通して人間の身元を認識する生体計測技術である。
我々は、Gait Multi-model Aggregation Network (GaitMA)と呼ばれる新しい歩行認識フレームワークを提案する。
まず, 2つのCNN特徴抽出器を用いて, シルエットと骨格の特徴を抽出した。
論文 参考訳(メタデータ) (2024-07-20T09:05:17Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - TriGait: Aligning and Fusing Skeleton and Silhouette Gait Data via a
Tri-Branch Network [4.699718818019937]
歩行認識は、非侵襲性と長距離性のため、識別のための有望な生体認証技術である。
服装の変化や視点の違いなどの外的変化は、歩行認識に重大な課題をもたらす。
本稿では,新しい三脚歩行認識フレームワークTriGaitを提案する。
論文 参考訳(メタデータ) (2023-08-25T12:19:51Z) - Skeleton-based Action Recognition through Contrasting Two-Stream
Spatial-Temporal Networks [11.66009967197084]
本稿では,空間的および時間的モジュールを並列に融合するContrastive GCN-Transformer Network(ConGT)を提案する。
我々は3つのベンチマークデータセットで実験を行い、このモデルが動作認識における最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-01-27T02:12:08Z) - Pose-Guided Graph Convolutional Networks for Skeleton-Based Action
Recognition [32.07659338674024]
グラフ畳み込みネットワーク(GCN)は、人体骨格を空間的および時間的グラフとしてモデル化することができる。
本研究では,高性能な人行動認識のためのマルチモーダルフレームワークとして,ポーズ誘導型GCN(PG-GCN)を提案する。
このモジュールの中核となる考え方は、トレーニング可能なグラフを使用して、スケルトンストリームから、ポーズストリームの機能を集約することで、より堅牢な機能表現能力を持つネットワークを実現することだ。
論文 参考訳(メタデータ) (2022-10-10T02:08:49Z) - Towards a Deeper Understanding of Skeleton-based Gait Recognition [4.812321790984493]
近年、ほとんどの歩行認識法は、人のシルエットを使って歩行の特徴を抽出している。
モデルに基づく手法はこれらの問題に悩まされず、身体関節の時間運動を表現することができる。
本研究では,高次入力と残差ネットワークを組み合わせたグラフ畳み込みネットワーク(GCN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-16T18:23:37Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
骨格に基づく行動分類のための新しい多言語時空間グラフネットワークを提案する。
2つの枝の枝からなるデュアルヘッドグラフネットワークを開発し、少なくとも2つの時間分解能を抽出する。
3つの大規模データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-08-10T09:25:07Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
本稿では,グラフ畳み込みネットワークのためのコンパクトで問題固有のネットワークを,段階的に自動的に見つける手法を提案する。
骨格に基づく人体行動認識のための2つのデータセットの実験結果から,提案手法は競争力あるいはより優れた分類性能を有することが示された。
論文 参考訳(メタデータ) (2020-11-11T09:57:49Z) - Temporal Attention-Augmented Graph Convolutional Network for Efficient
Skeleton-Based Human Action Recognition [97.14064057840089]
グラフネットワーク(GCN)はユークリッド以外のデータ構造をモデル化するのに非常に成功した。
ほとんどのGCNベースのアクション認識手法は、計算量の多いディープフィードフォワードネットワークを使用して、全てのスケルトンをアクションで処理する。
本稿では,骨格に基づく行動認識の効率を高めるための時間的アテンションモジュール(TAM)を提案する。
論文 参考訳(メタデータ) (2020-10-23T08:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。