Differential privacy for symmetric log-concave mechanisms
- URL: http://arxiv.org/abs/2202.11393v1
- Date: Wed, 23 Feb 2022 10:20:29 GMT
- Title: Differential privacy for symmetric log-concave mechanisms
- Authors: Staal A. Vinterbo
- Abstract summary: Adding random noise to database query results is an important tool for achieving privacy.
We provide a sufficient and necessary condition for $(epsilon, delta)$-differential privacy for all symmetric and log-concave noise densities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adding random noise to database query results is an important tool for
achieving privacy. A challenge is to minimize this noise while still meeting
privacy requirements. Recently, a sufficient and necessary condition for
$(\epsilon, \delta)$-differential privacy for Gaussian noise was published.
This condition allows the computation of the minimum privacy-preserving scale
for this distribution. We extend this work and provide a sufficient and
necessary condition for $(\epsilon, \delta)$-differential privacy for all
symmetric and log-concave noise densities. Our results allow fine-grained
tailoring of the noise distribution to the dimensionality of the query result.
We demonstrate that this can yield significantly lower mean squared errors than
those incurred by the currently used Laplace and Gaussian mechanisms for the
same $\epsilon$ and $\delta$.
Related papers
- Count on Your Elders: Laplace vs Gaussian Noise [9.546521474972485]
We argue that Laplace noise may in fact be preferable to Gaussian noise in many settings.
We show that the noise added by the Gaussian mechanism can always be replaced by Laplace noise of comparable variance.
This challenges the conventional wisdom that Gaussian noise should be used for high-dimensional noise.
arXiv Detail & Related papers (2024-08-13T16:36:33Z) - Fixed-Budget Differentially Private Best Arm Identification [62.36929749450298]
We study best arm identification (BAI) in linear bandits in the fixed-budget regime under differential privacy constraints.
We derive a minimax lower bound on the error probability, and demonstrate that the lower and the upper bounds decay exponentially in $T$.
arXiv Detail & Related papers (2024-01-17T09:23:25Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
We show how to shuffle $(epsilon_i,delta_i)$-PLDP setting with personalized privacy parameters.
We prove that shuffled $(epsilon_i,delta_i)$-PLDP process approximately preserves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
arXiv Detail & Related papers (2023-12-22T02:31:46Z) - Some Constructions of Private, Efficient, and Optimal $K$-Norm and Elliptic Gaussian Noise [54.34628844260993]
Differentially private computation often begins with a bound on some $d$-dimensional statistic's sensitivity.
For pure differential privacy, the $K$-norm mechanism can improve on this approach using a norm tailored to the statistic's sensitivity space.
This paper solves both problems for the simple statistics of sum, count, and vote.
arXiv Detail & Related papers (2023-09-27T17:09:36Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
A classical approach to private mean estimation is to compute the true mean and add unbiased, but possibly correlated, Gaussian noise to it.
We show that for every input dataset, an unbiased mean estimator satisfying concentrated differential privacy introduces approximately at least as much error.
arXiv Detail & Related papers (2023-01-31T18:47:42Z) - Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy
Constraints [53.01656650117495]
There is a disconnect between how researchers and practitioners handle privacy-utility tradeoffs.
Brownian mechanism works by first adding Gaussian noise of high variance corresponding to the final point of a simulated Brownian motion.
We complement our Brownian mechanism with ReducedAboveThreshold, a generalization of the classical AboveThreshold algorithm.
arXiv Detail & Related papers (2022-06-15T01:43:37Z) - Learning Numeric Optimal Differentially Private Truncated Additive
Mechanisms [5.079561894598125]
We introduce a tool to learn truncated noise for additive mechanisms with strong utility bounds.
We show that it is sufficient to consider symmetric and thatnew, for from the mean monotonically falling noise.
For sensitivity bounded mechanisms, we show that it is sufficient to consider symmetric and thatnew, for from the mean monotonically falling noise.
arXiv Detail & Related papers (2021-07-27T17:22:57Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - The Discrete Gaussian for Differential Privacy [26.179150185540514]
A key tool for building differentially private systems is adding Gaussian noise to the output of a function evaluated on a sensitive dataset.
Previous work has demonstrated that seemingly innocuous numerical errors can entirely destroy privacy.
We introduce and analyze the discrete Gaussian in the context of differential privacy.
arXiv Detail & Related papers (2020-03-31T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.