Optimized Tradeoffs for Private Prediction with Majority Ensembling
- URL: http://arxiv.org/abs/2411.17965v1
- Date: Wed, 27 Nov 2024 00:48:48 GMT
- Title: Optimized Tradeoffs for Private Prediction with Majority Ensembling
- Authors: Shuli Jiang, Qiuyi, Zhang, Gauri Joshi,
- Abstract summary: We introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm.
DaRRM is parameterized by a data-dependent noise function $gamma$, and enables efficient utility optimization over the class of all private algorithms.
We show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility.
- Score: 59.99331405291337
- License:
- Abstract: We study a classical problem in private prediction, the problem of computing an $(m\epsilon, \delta)$-differentially private majority of $K$ $(\epsilon, \Delta)$-differentially private algorithms for $1 \leq m \leq K$ and $1 > \delta \geq \Delta \geq 0$. Standard methods such as subsampling or randomized response are widely used, but do they provide optimal privacy-utility tradeoffs? To answer this, we introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm. It is parameterized by a data-dependent noise function $\gamma$, and enables efficient utility optimization over the class of all private algorithms, encompassing those standard methods. We show that maximizing the utility of an $(m\epsilon, \delta)$-private majority algorithm can be computed tractably through an optimization problem for any $m \leq K$ by a novel structural result that reduces the infinitely many privacy constraints into a polynomial set. In some settings, we show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility. Lastly, we demonstrate the strong empirical effectiveness of our first-of-its-kind privacy-constrained utility optimization for ensembling labels for private prediction from private teachers in image classification. Notably, our DaRRM framework with an optimized $\gamma$ exhibits substantial utility gains when compared against several baselines.
Related papers
- Differentially Private Algorithms for Graph Cuts: A Shifting Mechanism Approach and More [5.893651469750359]
We introduce edgedifferentially private algorithms for the multiway cut and the minimum $k$cut.
For the minimum $k$-cut problem we use a different approach, combining the exponential mechanism with bounds on the number of approximate $k$-cuts.
arXiv Detail & Related papers (2024-07-09T14:46:33Z) - Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - DP-Dueling: Learning from Preference Feedback without Compromising User Privacy [32.58099924135157]
We give the first differentially private dueling bandit algorithm for active learning with user preferences.
Our algorithms are computationally efficient with near-optimal performance.
We extend our results to any general decision space in $d$-dimensions with potentially infinite arms.
arXiv Detail & Related papers (2024-03-22T09:02:12Z) - Privacy Profiles for Private Selection [21.162924003105484]
We work out an easy-to-use recipe that bounds privacy profiles of ReportNoisyMax and PrivateTuning using the privacy profiles of the base algorithms they corral.
Our approach improves over all regimes of interest and leads to substantial benefits in end-to-end private learning experiments.
arXiv Detail & Related papers (2024-02-09T08:31:46Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
We show that PrivUnit achieves the optimal variance among a large family of locally private randomizers.
We also develop a new variant of PrivUnit based on the Gaussian distribution which is more amenable to mathematical analysis and enjoys the same optimality guarantees.
arXiv Detail & Related papers (2022-05-05T06:43:46Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Output Perturbation for Differentially Private Convex Optimization with
Improved Population Loss Bounds, Runtimes and Applications to Private
Adversarial Training [12.386462516398469]
Finding efficient, easily implementable differentially private (DP) algorithms that offer strong excess risk bounds is an important problem in modern machine learning.
We provide the tightest known $(epsilon, 0)$-DP population loss bounds and fastest runtimes under the presence of smoothness and strong convexity.
We apply our theory to two learning frameworks: tilted ERM and adversarial learning frameworks.
arXiv Detail & Related papers (2021-02-09T08:47:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.