論文の概要: Networked Online Learning for Control of Safety-Critical
Resource-Constrained Systems based on Gaussian Processes
- arxiv url: http://arxiv.org/abs/2202.11491v1
- Date: Wed, 23 Feb 2022 13:12:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-24 16:39:33.771317
- Title: Networked Online Learning for Control of Safety-Critical
Resource-Constrained Systems based on Gaussian Processes
- Title(参考訳): ガウス過程に基づく安全臨界資源制約システム制御のためのネットワークオンライン学習
- Authors: Armin Lederer, Mingmin Zhang, Samuel Tesfazgi, Sandra Hirche
- Abstract要約: 本稿では,ガウス過程の回帰に基づく新しいネットワーク型オンライン学習手法を提案する。
本稿では,送信チャネルの帯域制限と時間遅延を考慮した,ローカルシステムとクラウド間の効率的なデータ伝送方式を提案する。
- 参考スコア(独自算出の注目度): 9.544146562919792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety-critical technical systems operating in unknown environments require
the ability to quickly adapt their behavior, which can be achieved in control
by inferring a model online from the data stream generated during operation.
Gaussian process-based learning is particularly well suited for safety-critical
applications as it ensures bounded prediction errors. While there exist
computationally efficient approximations for online inference, these approaches
lack guarantees for the prediction error and have high memory requirements, and
are therefore not applicable to safety-critical systems with tight memory
constraints. In this work, we propose a novel networked online learning
approach based on Gaussian process regression, which addresses the issue of
limited local resources by employing remote data management in the cloud. Our
approach formally guarantees a bounded tracking error with high probability,
which is exploited to identify the most relevant data to achieve a certain
control performance. We further propose an effective data transmission scheme
between the local system and the cloud taking bandwidth limitations and time
delay of the transmission channel into account. The effectiveness of the
proposed method is successfully demonstrated in a simulation.
- Abstract(参考訳): 未知の環境で稼働する安全クリティカルな技術システムは、その行動に迅速に適応する能力を必要としており、操作中に生成されたデータストリームからモデルをオンラインに推測することで制御できる。
gaussian process-based learningは、境界付き予測エラーを確実にするため、特に安全クリティカルなアプリケーションに適している。
オンライン推論には計算効率のよい近似が存在するが、これらの手法は予測誤差の保証がなく、高いメモリ要件を有しており、厳密なメモリ制約を持つ安全クリティカルシステムには適用できない。
本研究では,クラウド上でのリモートデータ管理による限られたローカルリソースの問題に対処する,ガウシアンプロセス回帰に基づく新しいネットワーク型オンライン学習手法を提案する。
提案手法は,高い確率で有界追跡誤差を保証し,特定の制御性能を達成するために最も関連性の高いデータを特定する。
さらに,送信チャネルの帯域幅制限と遅延を考慮した,ローカルシステムとクラウド間の効率的なデータ伝送方式を提案する。
提案手法の有効性をシミュレーションにより検証した。
関連論文リスト
- Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - Verification of Neural Reachable Tubes via Scenario Optimization and Conformal Prediction [10.40899456282141]
Hamilton-Jacobiリーチビリティ分析は、そのような保証を提供するための一般的な形式的検証ツールである。
DeepReachは、高次元システムのための到達可能なチューブと安全コントローラの合成に使用されている。
本稿では,確率論的安全性を保証するために,頑健なシナリオ最適化と共形予測に基づく2つの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T02:03:36Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Sample-efficient Safe Learning for Online Nonlinear Control with Control
Barrier Functions [35.9713619595494]
強化学習と連続非線形制御は、複雑なシーケンシャルな意思決定タスクの複数の領域にうまく展開されている。
学習過程の探索特性とモデル不確実性の存在を考えると、それらを安全クリティカルな制御タスクに適用することは困難である。
本稿では,オンライン制御タスクを対象とした,効率のよいエピソード型安全な学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-29T00:54:35Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Model-Free Learning of Optimal Deterministic Resource Allocations in
Wireless Systems via Action-Space Exploration [4.721069729610892]
本稿では,最適パラメータ化資源割り当てポリシーを効率的に学習するための,技術的基盤と拡張性のある2次元勾配法を提案する。
提案手法は, 深層ネットワークなどの一般的な普遍表現の勾配を効率よく活用するだけでなく, 低次元摂動により構築された関連するランダムネットワークサービスのゼロ階勾配近似を一貫したゼロ階勾配近似に頼っているため, 真のモデルフリーである。
論文 参考訳(メタデータ) (2021-08-23T18:26:16Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Non-Episodic Learning for Online LQR of Unknown Linear Gaussian System [0.0]
単一の軌道からシステムに関する知識を得るオンライン非分離アルゴリズムを提案する。
識別と制御のほぼ確実に収束する割合を特徴付け、探索と搾取の間の最適なトレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-03-24T15:51:28Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。