Using Bayesian Deep Learning to infer Planet Mass from Gaps in
Protoplanetary Disks
- URL: http://arxiv.org/abs/2202.11730v1
- Date: Wed, 23 Feb 2022 19:00:05 GMT
- Title: Using Bayesian Deep Learning to infer Planet Mass from Gaps in
Protoplanetary Disks
- Authors: Sayantan Auddy, Ramit Dey, Min-Kai Lin (ASIAA, NCTS Physics Division),
Daniel Carrera, and Jacob B. Simon
- Abstract summary: We introduce a deep learning network "DPNNet-Bayesian" that can predict planet mass from disk gaps.
A unique feature of our approach is that it can distinguish between the uncertainty associated with the deep learning architecture and uncertainty inherent in the input data.
The network predicts masses of $ 86.0 pm 5.5 M_Earth $, $ 43.8 pm 3.3 M_Earth $, and $ 92.2 pm 5.1 M_Earth $ respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planet induced sub-structures, like annular gaps, observed in dust emission
from protoplanetary disks provide a unique probe to characterize unseen young
planets. While deep learning based model has an edge in characterizing the
planet's properties over traditional methods, like customized simulations and
empirical relations, it lacks in its ability to quantify the uncertainty
associated with its predictions. In this paper, we introduce a Bayesian deep
learning network "DPNNet-Bayesian" that can predict planet mass from disk gaps
and provides uncertainties associated with the prediction. A unique feature of
our approach is that it can distinguish between the uncertainty associated with
the deep learning architecture and uncertainty inherent in the input data due
to measurement noise. The model is trained on a data set generated from
disk-planet simulations using the \textsc{fargo3d} hydrodynamics code with a
newly implemented fixed grain size module and improved initial conditions. The
Bayesian framework enables estimating a gauge/confidence interval over the
validity of the prediction when applied to unknown observations. As a
proof-of-concept, we apply DPNNet-Bayesian to dust gaps observed in HL Tau. The
network predicts masses of $ 86.0 \pm 5.5 M_{\Earth} $, $ 43.8 \pm 3.3
M_{\Earth} $, and $ 92.2 \pm 5.1 M_{\Earth} $ respectively, which are
comparable to other studies based on specialized simulations.
Related papers
- DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
We develop DBNets, a tool to quickly infer the mass of allegedly embedded planets from protoplanetary discs.
We extensively tested our tool on out-of-distribution data.
DBNets can identify inputs strongly outside its training scope returning an uncertainty above a specific threshold.
It can be reliably applied only on discs observed with inclinations below approximately 60deg, in the optically thin regime.
arXiv Detail & Related papers (2024-02-19T19:00:09Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - ExoplANNET: A deep learning algorithm to detect and identify planetary
signals in radial velocity data [0.0]
A neural network is proposed to replace the computation of the significance of the signal detected with the radial velocity method.
The algorithm is trained using synthetic data of systems with and without planetary companions.
It achieves 28 % fewer false positives and execution time is five orders of magnitude faster than the traditional method.
arXiv Detail & Related papers (2023-03-16T14:16:19Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
This paper presents a practical workflow consisting of offline and online phases.
The offline phase includes training and building of an uncertain prior near-well geo-model.
The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data.
arXiv Detail & Related papers (2022-10-27T15:38:26Z) - PGNets: Planet mass prediction using convolutional neural networks for
radio continuum observations of protoplanetary disks [0.0]
Substructures induced by young planets in protoplanetary disks can be used to infer potential young planets' properties.
We developed Planet Gap neural Networks (PGNets) to infer planet mass from 2D images.
We reproduce the degeneracy scaling $alpha$ $propto $M_p3$ found in the linear fitting method.
arXiv Detail & Related papers (2021-11-30T08:12:08Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - DPNNet-2.0 Part I: Finding hidden planets from simulated images of
protoplanetary disk gaps [6.2194417376659015]
We introduce DPNNet-2.0, second in the series after DPNNet citepaud20, for predicting exoplanet masses directly from simulated images of protoplanetary disks.
This work is the first step towards the use of computer vision (implementing CNN) to directly extract mass of an exoplanet from planetary gaps observed in dust-surface density maps by telescopes such as the Atacama Large (sub-)Millimeter Array.
arXiv Detail & Related papers (2021-07-19T18:00:31Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - Calibration and Uncertainty Quantification of Bayesian Convolutional
Neural Networks for Geophysical Applications [0.0]
It is common to incorporate the uncertainty of predictions such subsurface models should provide calibrated probabilities and the associated uncertainties in their predictions.
It has been shown that popular Deep Learning-based models are often miscalibrated, and due to their deterministic nature, provide no means to interpret the uncertainty of their predictions.
We compare three different approaches obtaining probabilistic models based on convolutional neural networks in a Bayesian formalism.
arXiv Detail & Related papers (2021-05-25T17:54:23Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.