Word Segmentation on Discovered Phone Units with Dynamic Programming and
Self-Supervised Scoring
- URL: http://arxiv.org/abs/2202.11929v1
- Date: Thu, 24 Feb 2022 07:02:56 GMT
- Title: Word Segmentation on Discovered Phone Units with Dynamic Programming and
Self-Supervised Scoring
- Authors: Herman Kamper
- Abstract summary: Recent work on unsupervised speech segmentation has used self-supervised models with a phone segmentation module and a word segmentation module that are trained jointly.
This paper compares this joint methodology with an older idea: bottom-up phone-like unit discovery is performed first, and symbolic word segmentation is then performed on top of the discovered units.
I specifically describe a duration-penalized dynamic programming (DPDP) procedure that can be used for either phone or word segmentation by changing the self-supervised scoring network that gives segment costs.
- Score: 23.822788597966646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work on unsupervised speech segmentation has used self-supervised
models with a phone segmentation module and a word segmentation module that are
trained jointly. This paper compares this joint methodology with an older idea:
bottom-up phone-like unit discovery is performed first, and symbolic word
segmentation is then performed on top of the discovered units (without
influencing the lower level). I specifically describe a duration-penalized
dynamic programming (DPDP) procedure that can be used for either phone or word
segmentation by changing the self-supervised scoring network that gives segment
costs. For phone discovery, DPDP is applied with a contrastive predictive
coding clustering model, while for word segmentation it is used with an
autoencoding recurrent neural network. The two models are chained in order to
segment speech. This approach gives comparable word segmentation results to
state-of-the-art joint self-supervised models on an English benchmark. On
French and Mandarin data, it outperforms previous systems on the ZeroSpeech
benchmarks. Analysis shows that the chained DPDP system segments shorter filler
words well, but longer words might require an external top-down signal.
Related papers
- REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR [54.64158282822995]
We propose REBORN,Reinforcement-Learned Boundary with Iterative Training for Unsupervised ASR.
ReBORN alternates between training a segmentation model that predicts the boundaries of the segmental structures in speech signals and training the phoneme prediction model, whose input is the speech feature segmented by the segmentation model, to predict a phoneme transcription.
We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech.
arXiv Detail & Related papers (2024-02-06T13:26:19Z) - Revisiting speech segmentation and lexicon learning with better features [29.268728666438495]
We revisit a self-supervised method that segments unlabelled speech into word-like segments.
We start from the two-stage duration-penalised dynamic programming method.
In the first acoustic unit discovery stage, we replace contrastive predictive coding features with HuBERT.
After word segmentation in the second stage, we get an acoustic word embedding for each segment by averaging HuBERT features.
arXiv Detail & Related papers (2024-01-31T15:06:34Z) - OMG-Seg: Is One Model Good Enough For All Segmentation? [83.17068644513144]
OMG-Seg is a transformer-based encoder-decoder architecture with task-specific queries and outputs.
We show that OMG-Seg can support over ten distinct segmentation tasks and yet significantly reduce computational and parameter overhead.
arXiv Detail & Related papers (2024-01-18T18:59:34Z) - Unsupervised Universal Image Segmentation [59.0383635597103]
We propose an Unsupervised Universal model (U2Seg) adept at performing various image segmentation tasks.
U2Seg generates pseudo semantic labels for these segmentation tasks via leveraging self-supervised models.
We then self-train the model on these pseudo semantic labels, yielding substantial performance gains.
arXiv Detail & Related papers (2023-12-28T18:59:04Z) - SelfSeg: A Self-supervised Sub-word Segmentation Method for Neural
Machine Translation [51.881877192924414]
Sub-word segmentation is an essential pre-processing step for Neural Machine Translation (NMT)
This paper introduces SelfSeg, a self-supervised neural sub-word segmentation method.
SelfSeg is much faster to train/decode and requires only monolingual dictionaries instead of parallel corpora.
arXiv Detail & Related papers (2023-07-31T04:38:47Z) - Context-aware Fine-tuning of Self-supervised Speech Models [56.95389222319555]
We study the use of context, i.e., surrounding segments, during fine-tuning.
We propose a new approach called context-aware fine-tuning.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks.
arXiv Detail & Related papers (2022-12-16T15:46:15Z) - Segmental Contrastive Predictive Coding for Unsupervised Word
Segmentation [33.35220574193796]
We propose a segmental contrastive predictive coding (SCPC) framework that can model the signal structure at a higher level e.g. at the phoneme level.
A differentiable boundary detector finds variable-length segments, which are then used to optimize a segment encoder via NCE.
We show that our single model outperforms existing phoneme and word segmentation methods on TIMIT and Buckeye datasets.
arXiv Detail & Related papers (2021-06-03T23:12:05Z) - Towards unsupervised phone and word segmentation using self-supervised
vector-quantized neural networks [36.23526776206862]
We investigate segmenting and clustering speech into low-bitrate phone-like sequences without supervision.
We specifically constrain pretrained self-supervised vector-quantized (VQ) neural networks so that blocks of contiguous feature vectors are assigned to the same code.
arXiv Detail & Related papers (2020-12-14T14:17:33Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Whole-Word Segmental Speech Recognition with Acoustic Word Embeddings [28.04666950237383]
We consider segmental models for whole-word ("acoustic-to-word") speech recognition.
We describe an efficient approach for end-to-end whole-word segmental models.
We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation.
arXiv Detail & Related papers (2020-07-01T02:22:09Z) - Catplayinginthesnow: Impact of Prior Segmentation on a Model of Visually
Grounded Speech [24.187382590960254]
Children do not build their lexicon by segmenting spoken input into phonemes and then building up words from them.
This suggests that the ideal way of learning a language is by starting from full semantic units.
We present a simple way to introduce such information into an RNN-based model and investigate which type of boundary is the most efficient.
arXiv Detail & Related papers (2020-06-15T13:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.