Cognitive Semantic Communication Systems Driven by Knowledge Graph
- URL: http://arxiv.org/abs/2202.11958v1
- Date: Thu, 24 Feb 2022 08:26:18 GMT
- Title: Cognitive Semantic Communication Systems Driven by Knowledge Graph
- Authors: Fuhui Zhou, Yihao Li, Xinyuan Zhang, Qihui Wu, Xianfu Lei and Rose
Qingyang Hu
- Abstract summary: A cognitive semantic communication framework is proposed by exploiting knowledge graph.
A simple, general and interpretable solution for semantic information detection is developed.
Our proposed system is superior to other benchmark systems in terms of the data compression rate and the reliability of communication.
- Score: 33.29303908864777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic communication is envisioned as a promising technique to break
through the Shannon limit. However, the existing semantic communication
frameworks do not involve inference and error correction, which limits the
achievable performance. In this paper, in order to tackle this issue, a
cognitive semantic communication framework is proposed by exploiting knowledge
graph. Moreover, a simple, general and interpretable solution for semantic
information detection is developed by exploiting triples as semantic symbols.
It also allows the receiver to correct errors occurring at the symbolic level.
Furthermore, the pre-trained model is fine-tuned to recover semantic
information, which overcomes the drawback that a fixed bit length coding is
used to encode sentences of different lengths. Simulation results on the public
WebNLG corpus show that our proposed system is superior to other benchmark
systems in terms of the data compression rate and the reliability of
communication.
Related papers
- Building the Self-Improvement Loop: Error Detection and Correction in Goal-Oriented Semantic Communications [2.677520298504178]
semantic communication (SemCom) focuses on transmitting meaning rather than symbols, leading to significant improvements in communication efficiency.
Despite these advantages, semantic errors -- stemming from discrepancies between transmitted and received meanings -- present a major challenge to system reliability.
This paper proposes a comprehensive framework for detecting and correcting semantic errors in SemCom systems.
arXiv Detail & Related papers (2024-11-03T12:29:23Z) - Rate-Distortion-Perception Theory for Semantic Communication [73.04341519955223]
We study the achievable data rate of semantic communication under the symbol distortion and semantic perception constraints.
We observe that there exists cases that the receiver can directly infer the semantic information source satisfying certain distortion and perception constraints.
arXiv Detail & Related papers (2023-12-09T02:04:32Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios.
An effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph.
For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users.
arXiv Detail & Related papers (2023-03-15T12:01:43Z) - Semantic-Native Communication: A Simplicial Complex Perspective [50.099494681671224]
We study semantic communication from a topological space perspective.
A transmitter first maps its data into a $k$-order simplicial complex and then learns its high-order correlations.
The receiver decodes the structure and infers the missing or distorted data.
arXiv Detail & Related papers (2022-10-30T22:33:44Z) - EXK-SC: A Semantic Communication Model Based on Information Framework
Expansion and Knowledge Collision [12.584442859898282]
This work is the first to discuss semantic expansion and knowledge collision in the semantic information framework.
Some important theoretical results are presented, including the relationship between semantic expansion and the transmission information rate.
We believe such a semantic information framework may provide a new paradigm for semantic communications.
arXiv Detail & Related papers (2022-10-24T09:00:14Z) - Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
Semantic Communications [71.63189900803623]
A novel emergent SC system framework is proposed and is composed of a signaling game for emergent language design and a neuro-symbolic (NeSy) artificial intelligence (AI) approach for causal reasoning.
The ESC system is designed to enhance the novel metrics of semantic information, reliability, distortion and similarity.
arXiv Detail & Related papers (2022-10-21T15:33:37Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Semantic Communications: Principles and Challenges [59.13318519076149]
This article provides an overview on semantic communications.
After a brief review on Shannon information theory, we discuss semantic communications with theory, frameworks, and system design enabled by deep learning.
arXiv Detail & Related papers (2021-12-30T16:32:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.