Predicting the impact of treatments over time with uncertainty aware
neural differential equations
- URL: http://arxiv.org/abs/2202.11987v1
- Date: Thu, 24 Feb 2022 09:50:02 GMT
- Title: Predicting the impact of treatments over time with uncertainty aware
neural differential equations
- Authors: Edward De Brouwer, Javier Gonz\'alez Hern\'andez, Stephanie Hyland
- Abstract summary: We propose Counterfactual ODE, a novel method to predict the impact of treatments continuously over time.
We demonstrate over several longitudinal data sets that CF-ODE provides more accurate predictions and more reliable uncertainty estimates than previously available methods.
- Score: 2.099922236065961
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting the impact of treatments from observational data only still
represents a majorchallenge despite recent significant advances in time series
modeling. Treatment assignments are usually correlated with the predictors of
the response, resulting in a lack of data support for counterfactual
predictions and therefore in poor quality estimates. Developments in causal
inference have lead to methods addressing this confounding by requiring a
minimum level of overlap. However,overlap is difficult to assess and usually
notsatisfied in practice. In this work, we propose Counterfactual ODE (CF-ODE),
a novel method to predict the impact of treatments continuously over time using
Neural Ordinary Differential Equations equipped with uncertainty estimates.
This allows to specifically assess which treatment outcomes can be reliably
predicted. We demonstrate over several longitudinal data sets that CF-ODE
provides more accurate predictions and more reliable uncertainty estimates than
previously available methods.
Related papers
- Conformal Prediction for Dose-Response Models with Continuous Treatments [0.23213238782019321]
We present a novel methodology for generating prediction intervals for dose-response models.
Our method approximates local coverage for every treatment value by applying kernel functions as weights in weighted conformal prediction.
arXiv Detail & Related papers (2024-09-30T15:40:54Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Deep Evidential Learning for Radiotherapy Dose Prediction [0.0]
We present a novel application of an uncertainty-quantification framework called Deep Evidential Learning in the domain of radiotherapy dose prediction.
We found that this model can be effectively harnessed to yield uncertainty estimates that inherited correlations with prediction errors upon completion of network training.
arXiv Detail & Related papers (2024-04-26T02:43:45Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by diverse progression rates among individuals.
We propose a conditional score-based diffusion model to generate CTh trajectories with the given baseline information.
Our model has a near-zero bias with narrow confidential 95% interval compared to the ground-truth CTh in 6-36 months.
arXiv Detail & Related papers (2024-03-11T17:26:18Z) - HypUC: Hyperfine Uncertainty Calibration with Gradient-boosted
Corrections for Reliable Regression on Imbalanced Electrocardiograms [3.482894964998886]
We propose HypUC, a framework for imbalanced probabilistic regression in medical time series.
HypUC is evaluated on a large, diverse, real-world dataset of ECGs collected from millions of patients.
arXiv Detail & Related papers (2023-11-23T06:17:31Z) - Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long
Follow-up Time [28.11470886127216]
Causal effect estimation for dynamic treatment regimes (DTRs) contributes to sequential decision making.
We combine outcome regression models with treatment models for high dimensional features using uncensored subjects that are small in sample size.
Also, the developed deep Bayesian models can model uncertainty and output the prediction variance which is essential for the safety-aware applications, such as self-driving cars and medical treatment design.
arXiv Detail & Related papers (2021-09-20T13:21:39Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.