TriggerCit: Early Flood Alerting using Twitter and Geolocation -- a
comparison with alternative sources
- URL: http://arxiv.org/abs/2202.12014v2
- Date: Sat, 5 Mar 2022 12:23:40 GMT
- Title: TriggerCit: Early Flood Alerting using Twitter and Geolocation -- a
comparison with alternative sources
- Authors: Carlo Bono (1), Barbara Pernici (1), Jose Luis Fernandez-Marquez (2),
Amudha Ravi Shankar (2), Mehmet O\u{g}uz M\"ul\^ayim (3), Edoardo Nemni (4
and 5) ((1) Politecnico di Milano, (2) University of Geneva, (3) Artificial
Intelligence Research Institute IIIA-CSIC, (4) United Nations Satellite
Centre UNOSAT, (5) United Nations Institute for Training and Research UNITAR)
- Abstract summary: Social media can support emergency response with evidence-based content posted by citizens and organisations during ongoing events.
We propose TriggerCit: an early flood alerting tool with a multilanguage approach focused on timeliness and geolocation.
Geolocated visual evidence extracted from Twitter by TriggerCit was analysed in two case studies on floods in Thailand and Nepal in 2021.
- Score: 0.2603110718989132
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Rapid impact assessment in the immediate aftermath of a natural disaster is
essential to provide adequate information to international organisations, local
authorities, and first responders. Social media can support emergency response
with evidence-based content posted by citizens and organisations during ongoing
events. In the paper, we propose TriggerCit: an early flood alerting tool with
a multilanguage approach focused on timeliness and geolocation. The paper
focuses on assessing the reliability of the approach as a triggering system,
comparing it with alternative sources for alerts, and evaluating the quality
and amount of complementary information gathered. Geolocated visual evidence
extracted from Twitter by TriggerCit was analysed in two case studies on floods
in Thailand and Nepal in 2021.
Related papers
- CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
This study introduces a novel approach to disaster text classification by enhancing a pre-trained Large Language Model (LLM)
Our methodology involves creating a comprehensive instruction dataset from disaster-related tweets, which is then used to fine-tune an open-source LLM.
This fine-tuned model can classify multiple aspects of disaster-related information simultaneously, such as the type of event, informativeness, and involvement of human aid.
arXiv Detail & Related papers (2024-06-16T23:01:10Z) - Information Retrieval and Classification of Real-Time Multi-Source
Hurricane Evacuation Notices [2.500155415916692]
We developed an approach to timely detect and track the locally issued hurricane evacuation notices.
The text data were collected mainly with a spatially targeted web scraping method.
The framework may be applied to other types of disasters for rapid and targeted retrieval, classification, redistribution, and archiving of real-time government orders and notifications.
arXiv Detail & Related papers (2024-01-07T16:35:30Z) - Natural Disaster Analysis using Satellite Imagery and Social-Media Data
for Emergency Response Situations [0.0]
This research has been divided into two stages, namely, satellite image analysis and twitter data analysis.
The first stage involves pre and post disaster satellite image analysis of the location.
The second stage focuses on mapping the region with essential information about the disaster situation.
arXiv Detail & Related papers (2023-11-16T15:01:26Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
We present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting.
Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data.
arXiv Detail & Related papers (2023-10-23T07:01:09Z) - DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet
Classification via Memory Bank [52.20298962359658]
In crisis events, people often use social media platforms such as Twitter to disseminate information about the situation, warnings, advice, and support.
fully-supervised approaches require annotating vast amounts of data and are impractical due to limited response time.
Semi-supervised models can be biased, performing moderately well for certain classes while performing extremely poorly for others.
We propose a simple but effective debiasing method, DeCrisisMB, that utilizes a Memory Bank to store and perform equal sampling for generated pseudo-labels from each class at each training.
arXiv Detail & Related papers (2023-10-23T05:25:51Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
We introduce HurricaneSARC, a dataset of 15,000 tweets annotated for intended sarcasm.
Our best model is able to obtain as much as 0.70 F1 on our dataset.
arXiv Detail & Related papers (2023-08-16T05:58:12Z) - IKDSumm: Incorporating Key-phrases into BERT for extractive Disaster
Tweet Summarization [5.299958874647294]
We propose a disaster-specific tweet summarization framework, IKDSumm.
IKDSumm identifies the crucial and important information from each tweet related to a disaster through key-phrases of that tweet.
We utilize these key-phrases to automatically generate a summary of the tweets.
arXiv Detail & Related papers (2023-05-19T11:05:55Z) - ContCommRTD: A Distributed Content-based Misinformation-aware Community
Detection System for Real-Time Disaster Reporting [0.5156484100374059]
We propose a novel distributed system that provides in near real-time information on hazard-related events and their evolution.
Our distributed disaster reporting system analyzes the social relationship among worldwide geolocated tweets.
As misinformation can lead to increase damage if propagated in hazards related tweets, we propose a new deep learning model to detect fake news.
arXiv Detail & Related papers (2023-01-30T15:28:47Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter.
Using transfer learning and 6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene.
The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey.
arXiv Detail & Related papers (2021-10-12T06:31:54Z) - Intelligent Agent for Hurricane Emergency Identification and Text
Information Extraction from Streaming Social Media Big Data [10.783778350418785]
We use Hurricane Harvey and the associated Houston flooding as the motivating scenario to conduct research.
We develop a prototype as a proof-of-concept of using an intelligent agent as a complementary role to support emergency centres in hurricane emergency response.
This intelligent agent is used to collect real-time streaming tweets during a natural disaster event, to identify tweets requesting rescue, to extract key information such as address and associated geocode, and to visualize the extracted information in an interactive map in decision supports.
arXiv Detail & Related papers (2021-06-14T00:12:27Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
Social media has greatly enabled people to participate in online activities at an unprecedented rate.
This unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation.
We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances.
Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
arXiv Detail & Related papers (2020-04-03T18:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.