Enhanced Cavity Optomechanics with Quantum-well Exciton Polaritons
- URL: http://arxiv.org/abs/2202.12094v2
- Date: Fri, 16 Sep 2022 11:24:39 GMT
- Title: Enhanced Cavity Optomechanics with Quantum-well Exciton Polaritons
- Authors: Nicola Carlon Zambon, Zakari Denis, Romain De Oliveira, Sylvain
Ravets, Cristiano Ciuti, Ivan Favero, Jacqueline Bloch
- Abstract summary: microresonators embed quantum wells can host excitonic, optical and mechanical modes at once.
We investigate the case where the system operates in the strong exciton-photon coupling regime.
We predict an enhancement of polariton-phonon interactions by two orders of magnitude with respect to mere optomechanical coupling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semiconductor microresonators embedding quantum wells can host tightly
confined and mutually interacting excitonic, optical and mechanical modes at
once. We theoretically investigate the case where the system operates in the
strong exciton-photon coupling regime, while the optical and excitonic
resonances are parametrically modulated by the interaction with a mechanical
mode. Owing to the large exciton-phonon coupling at play in semiconductors, we
predict an enhancement of polariton-phonon interactions by two orders of
magnitude with respect to mere optomechanical coupling: a near-unity
single-polariton quantum cooperativity is within reach for current
semiconductor resonator platforms. We further analyze how polariton
nonlinearities affect dynamical back-action, modifying the capability to cool
or amplify the mechanical motion.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Entangling two exciton modes using exciton optomechanics [4.561414434532408]
We propose to entangle two exciton modes in an exciton-optomechanics system.
The protocol is within reach of current technology and may become a promising approach for preparing excitonic entanglement.
arXiv Detail & Related papers (2024-02-05T04:07:20Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Excitonic enhancement of cavity-mediated interactions in a two-band
Hubbard model [5.629705943815797]
We study cavity-mediated interactions that are generated in a two-dimensional two-band Hubbard model coupled to an optical cavity, when it is driven in-gap by a strong laser.
We derive effective low-energy Hamiltonians by projecting out the high-energy degrees of freedom and treating intrinsic interactions on a mean field level.
arXiv Detail & Related papers (2023-10-19T10:14:14Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Optical-force-mediated coupling between levitated nanospheres can go
ultrastrong [0.0]
We investigate the effect of optical-force-mediated interactions onto the quantum dynamics of a pair of nanospheres optically trapped in two neighboring optical tweezers.
Thanks to the interference between the tweezer beams and the elastically scattered light by the other nanosphere, the effective inter nanosphere coupling can reach the ultrastrong coupling regime.
arXiv Detail & Related papers (2022-03-18T18:59:59Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Cavity-induced exciton localisation and polariton blockade in
two-dimensional semiconductors coupled to an electromagnetic resonator [0.0]
Recent experiments have demonstrated strong light-matter coupling between electromagnetic nanoresonators and pristine sheets of two-dimensional semiconductors.
We present a first-principles microscopic quantum theory for the interaction between excitons in an infinite sheet of two-dimensional material and a localised electromagnetic resonator.
We predict that polariton blockade due to nonlinear exciton-exciton interactions is well within reach for nanoresonators coupled to transition-metal dichalcogenides.
arXiv Detail & Related papers (2021-03-26T14:16:34Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.