論文の概要: Light Robust Monocular Depth Estimation For Outdoor Environment Via
Monochrome And Color Camera Fusion
- arxiv url: http://arxiv.org/abs/2202.12108v1
- Date: Thu, 24 Feb 2022 14:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 16:53:12.567585
- Title: Light Robust Monocular Depth Estimation For Outdoor Environment Via
Monochrome And Color Camera Fusion
- Title(参考訳): モノクロとカラーカメラ融合による屋外環境の光ロバスト単眼深度推定
- Authors: Hyeonsoo Jang, Yeongmin Ko, Younkwan Lee, and Moongu Jeon
- Abstract要約: カラー画像とモノクロ画像のピクセルレベルの融合とステレオマッチングを行い,その深さ係数を部分的に向上させた。
我々の手法は、すべてのメトリクスで最先端の作業より優れているだけでなく、コスト、メモリ、計算の面でも効率的です。
- 参考スコア(独自算出の注目度): 8.880921123362292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth estimation plays a important role in SLAM, odometry, and autonomous
driving. Especially, monocular depth estimation is profitable technology
because of its low cost, memory, and computation. However, it is not a
sufficiently predicting depth map due to a camera often failing to get a clean
image because of light conditions. To solve this problem, various sensor fusion
method has been proposed. Even though it is a powerful method, sensor fusion
requires expensive sensors, additional memory, and high computational
performance.
In this paper, we present color image and monochrome image pixel-level fusion
and stereo matching with partially enhanced correlation coefficient
maximization. Our methods not only outperform the state-of-the-art works across
all metrics but also efficient in terms of cost, memory, and computation. We
also validate the effectiveness of our design with an ablation study.
- Abstract(参考訳): 深度推定はSLAM、オドメトリー、自律走行において重要な役割を果たす。
特に、単眼深度推定は、低コスト、メモリ、計算能力のため、利益の出る技術である。
しかし、カメラが光条件のためにクリーンな画像を得ることができない場合が多いため、十分な予測深度マップではない。
この問題を解決するために,様々なセンサ融合法が提案されている。
強力な方法ではあるが、センサー融合には高価なセンサー、追加のメモリ、高い計算性能が必要である。
本稿では,カラー画像とモノクロ画像のピクセルレベルの融合と,部分的に相関係数を最大化するステレオマッチングを提案する。
私たちのメソッドは、すべてのメトリクスで最先端の作業に勝るだけでなく、コスト、メモリ、計算の面でも効率的です。
また, アブレーション研究により, 設計の有効性を検証した。
関連論文リスト
- Lift-Attend-Splat: Bird's-eye-view camera-lidar fusion using transformers [39.14931758754381]
単分子深度推定を完全に回避する新しい融合法を提案する。
本モデルでは,ライダー機能の利用率に基づいて,カメラ機能の利用を調節できることが示されている。
論文 参考訳(メタデータ) (2023-12-22T18:51:50Z) - Practical cross-sensor color constancy using a dual-mapping strategy [0.0]
提案手法では,D65条件下では,テストセンサからの単純な白点のみを必要とする。
第2のマッピングフェーズでは、再構成された画像データをスパースに変換し、軽量な多層パーセプトロン(MLP)モデルで最適化する。
このアプローチは、センサの相違を効果的に低減し、主要なクロスセンサー手法と同等の性能を提供する。
論文 参考訳(メタデータ) (2023-11-20T13:58:59Z) - ExBluRF: Efficient Radiance Fields for Extreme Motion Blurred Images [58.24910105459957]
極端運動ぼかし画像の新しいビュー合成法であるExBluRFを提案する。
提案手法は,6-DOFカメラトラジェクトリをベースとしたモーションブラー定式化と,ボクセルをベースとした放射場からなる。
既存の作業と比較して、トレーニング時間とGPUメモリ使用量の10倍の順序で、よりシャープな3Dシーンを復元する。
論文 参考訳(メタデータ) (2023-09-16T11:17:25Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - Exposure Fusion for Hand-held Camera Inputs with Optical Flow and
PatchMatch [53.149395644547226]
ハンドヘルドカメラによるマルチ露光画像融合のためのハイブリッド合成法を提案する。
提案手法は,このような動作に対処し,各入力の露光情報を効果的に維持する。
実験の結果,本手法の有効性とロバスト性を示した。
論文 参考訳(メタデータ) (2023-04-10T09:06:37Z) - FloatingFusion: Depth from ToF and Image-stabilized Stereo Cameras [37.812681878193914]
スマートフォンには、飛行時間(ToF)深度センサーと複数のカラーカメラを備えたマルチモーダルカメラシステムが搭載されている。
高精度な高解像度の深度を作り出すことは、ToFセンサーの低解像度と限られた能動照明力のために依然として困難である。
本稿では,1枚のスナップショットからカメラパラメータを推定できる高密度2D/3Dマッチングに基づく自動校正手法を提案する。
論文 参考訳(メタデータ) (2022-10-06T09:57:09Z) - Learning Enriched Illuminants for Cross and Single Sensor Color
Constancy [182.4997117953705]
ネットワークをトレーニングするためのクロスセンサ自己教師型トレーニングを提案する。
センサに依存しない方法で人工発光体をランダムにサンプリングすることでネットワークを訓練する。
実験により、我々のクロスセンサモデルとシングルセンサーモデルは、他の最先端手法よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-03-21T15:45:35Z) - Dense Optical Flow from Event Cameras [55.79329250951028]
本稿では,イベントカメラからの高密度光フロー推定に特徴相関と逐次処理を導入することを提案する。
提案手法は、高密度光流を計算し、MVSEC上での終点誤差を23%削減する。
論文 参考訳(メタデータ) (2021-08-24T07:39:08Z) - High-Resolution Depth Maps Based on TOF-Stereo Fusion [27.10059147107254]
そこで本研究では,効率的な種子育成アルゴリズムに基づくTOF-ステレオ融合法を提案する。
提案アルゴリズムは2次元画像に基づくステレオアルゴリズムよりも優れていることを示す。
このアルゴリズムは、単一のCPU上でリアルタイムのパフォーマンスを示す可能性がある。
論文 参考訳(メタデータ) (2021-07-30T15:11:42Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
自律運転やロボティクスなど,多くのアプリケーションを対象とした3次元セマンティックセマンティックセグメンテーションのためのマルチセンサフュージョンについて検討する。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
本稿では,2つのモードから特徴を分離して抽出する2ストリームネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z) - PlenoptiCam v1.0: A light-field imaging framework [8.467466998915018]
光界カメラは狭帯域深度センシングアプリケーションにおいてリッチな3次元情報検索において重要な役割を担っている。
レンズカメラによる露光から光フィールドを構成する際の重要な障害は、4次元画像データを計算的に調整し、調整し、再配置することである。
特定の望遠カメラ専用のパイプラインを調整することで、全体的な画質を向上させるためのいくつかの試みが提案されている。
論文 参考訳(メタデータ) (2020-10-14T09:23:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。