Quantum Deep Reinforcement Learning for Robot Navigation Tasks
- URL: http://arxiv.org/abs/2202.12180v3
- Date: Mon, 24 Jun 2024 08:08:33 GMT
- Title: Quantum Deep Reinforcement Learning for Robot Navigation Tasks
- Authors: Hans Hohenfeld, Dirk Heimann, Felix Wiebe, Frank Kirchner,
- Abstract summary: We show that quantum circuits in hybrid quantum-classic reinforcement learning setups are capable of learning optimal policies in multiple robotic navigation scenarios.
We find that the employed quantum circuits outperform the classical neural network baselines when equating for the number of trainable parameters.
- Score: 2.6999000177990924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We utilize hybrid quantum deep reinforcement learning to learn navigation tasks for a simple, wheeled robot in simulated environments of increasing complexity. For this, we train parameterized quantum circuits (PQCs) with two different encoding strategies in a hybrid quantum-classical setup as well as a classical neural network baseline with the double deep Q network (DDQN) reinforcement learning algorithm. Quantum deep reinforcement learning (QDRL) has previously been studied in several relatively simple benchmark environments, mainly from the OpenAI gym suite. However, scaling behavior and applicability of QDRL to more demanding tasks closer to real-world problems e. g., from the robotics domain, have not been studied previously. Here, we show that quantum circuits in hybrid quantum-classic reinforcement learning setups are capable of learning optimal policies in multiple robotic navigation scenarios with notably fewer trainable parameters compared to a classical baseline. Across a large number of experimental configurations, we find that the employed quantum circuits outperform the classical neural network baselines when equating for the number of trainable parameters. Yet, the classical neural network consistently showed better results concerning training times and stability, with at least one order of magnitude of trainable parameters more than the best-performing quantum circuits. However, validating the robustness of the learning methods in a large and dynamic environment, we find that the classical baseline produces more stable and better performing policies overall.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train [18.138290778243075]
We apply the Quantum-Train method to reinforcement learning tasks, called QTRL, training the classical policy network model.
The training result of the QTRL is a classical model, meaning the inference stage only requires classical computer.
arXiv Detail & Related papers (2024-07-08T16:41:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum HyperNetworks: Training Binary Neural Networks in Quantum
Superposition [16.1356415877484]
We introduce quantum hypernetworks as a mechanism to train binary neural networks on quantum computers.
We show that our approach effectively finds optimal parameters, hyperparameters and architectural choices with high probability on classification problems.
Our unified approach provides an immense scope for other applications in the field of machine learning.
arXiv Detail & Related papers (2023-01-19T20:06:48Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Hyperparameter Importance of Quantum Neural Networks Across Small
Datasets [1.1470070927586014]
A quantum neural network can play a similar role to a neural network.
Very little is known about suitable circuit architectures for machine learning.
This work introduces new methodologies to study quantum machine learning models.
arXiv Detail & Related papers (2022-06-20T20:26:20Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Embedding Learning in Hybrid Quantum-Classical Neural Networks [8.029801398363261]
We propose a quantum few-shot embedding learning paradigm, which learns embeddings useful for training downstream quantum machine learning tasks.
We identify the circuit bypass problem in hybrid neural networks, where learned classical parameters do not utilize the Hilbert space efficiently.
We observe that the few-shot learned embeddings generalize to unseen classes and suffer less from the circuit bypass problem compared with other approaches.
arXiv Detail & Related papers (2022-04-09T21:16:20Z) - Variational Quantum Soft Actor-Critic [1.90365714903665]
We develop a quantum reinforcement learning algorithm based on soft actor-critic -- one of the state-of-the-art methods for continuous control.
We show that this quantum version of soft actor-critic is comparable with the original soft actor-critic, using much less adjustable parameters.
arXiv Detail & Related papers (2021-12-20T06:31:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.