The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning
- URL: http://arxiv.org/abs/2212.11826v1
- Date: Thu, 22 Dec 2022 16:06:24 GMT
- Title: The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning
- Authors: Massimiliano Incudini, Michele Grossi, Antonio Mandarino, Sofia
Vallecorsa, Alessandra Di Pierro, David Windridge
- Abstract summary: Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
- Score: 52.77024349608834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building a quantum analog of classical deep neural networks represents a
fundamental challenge in quantum computing. A key issue is how to address the
inherent non-linearity of classical deep learning, a problem in the quantum
domain due to the fact that the composition of an arbitrary number of quantum
gates, consisting of a series of sequential unitary transformations, is
intrinsically linear. This problem has been variously approached in the
literature, principally via the introduction of measurements between layers of
unitary transformations. In this paper, we introduce the Quantum Path Kernel, a
formulation of quantum machine learning capable of replicating those aspects of
deep machine learning typically associated with superior generalization
performance in the classical domain, specifically, hierarchical feature
learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel,
which has been used to study the dynamics of classical and quantum machine
learning models. The Quantum Path Kernel exploits the parameter trajectory,
i.e. the curve delineated by model parameters as they evolve during training,
enabling the representation of differential layer-wise convergence behaviors,
or the formation of hierarchical parametric dependencies, in terms of their
manifestation in the gradient space of the predictor function. We evaluate our
approach with respect to variants of the classification of Gaussian XOR
mixtures - an artificial but emblematic problem that intrinsically requires
multilevel learning in order to achieve optimal class separation.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Expressibility-induced Concentration of Quantum Neural Tangent Kernels [4.561685127984694]
We study the connections between the trainability and expressibility of quantum tangent kernel models.
For global loss functions, we rigorously prove that high expressibility of both the global and local quantum encodings can lead to exponential concentration of quantum tangent kernel values to zero.
Our discoveries unveil a pivotal characteristic of quantum neural tangent kernels, offering valuable insights for the design of wide quantum variational circuit models.
arXiv Detail & Related papers (2023-11-08T19:00:01Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Variational Quantum Soft Actor-Critic [1.90365714903665]
We develop a quantum reinforcement learning algorithm based on soft actor-critic -- one of the state-of-the-art methods for continuous control.
We show that this quantum version of soft actor-critic is comparable with the original soft actor-critic, using much less adjustable parameters.
arXiv Detail & Related papers (2021-12-20T06:31:06Z) - Quantum tangent kernel [0.8921166277011345]
In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit.
We find that parameters of a deep enough quantum circuit do not move much from its initial values during training.
Such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel.
arXiv Detail & Related papers (2021-11-04T15:38:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.