Unconventional mechanism of virtual-state population through dissipation
- URL: http://arxiv.org/abs/2202.12203v1
- Date: Thu, 24 Feb 2022 17:09:43 GMT
- Title: Unconventional mechanism of virtual-state population through dissipation
- Authors: Alejandro Vivas-Via\~na, Alejandro Gonz\'alez-Tudela, Carlos S\'anchez
Mu\~noz
- Abstract summary: We report a phenomenon occurring in open quantum systems by which virtual states can acquire a sizable population in the long time limit.
This means that the situation where the virtual state remains unpopulated can be metastable.
We show how these results can be relevant for practical questions such as the generation of stable and metastable entangled states in dissipative systems of interacting qubits.
- Score: 125.99533416395765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Virtual states are a central concept in quantum mechanics. By definition, the
probability of finding a quantum system in a virtual state should be
vanishingly small at all times. In contrast to this notion, we report a
phenomenon occurring in open quantum systems by which virtual states can
acquire a sizable population in the long time limit, even if they are not
directly coupled to any dissipative channel. This means that the situation
where the virtual state remains unpopulated can be metastable. We describe this
effect by introducing a two-step adiabiatic elimination method, that we termed
hierarchical adiabatic elimination, which allows one to obtain analytical
expressions of the timescale of metastability in general open quantum systems.
We show how these results can be relevant for practical questions such as the
generation of stable and metastable entangled states in dissipative systems of
interacting qubits.
Related papers
- Two-mode Open Quantum Systems: Decoherence and Localized Bound State Dynamics [1.3281936946796913]
Dissipationless localized bound states of open quantum systems are robust to decoherence.
This may provide a new avenue to develop dissipationless quantum technology for quantum operations.
arXiv Detail & Related papers (2024-10-28T08:51:14Z) - Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Probabilistic Unitary Formulation of Open Quantum System Dynamics [3.8326963933937885]
We show that for any continuously evolving open quantum system, its dynamics can be described by a time-dependent Hamiltonian and probabilistic combinations of up to $d-1$.
The formalism provides a scheme to control a quantum state to evolve along designed quantum trajectories, and can be particularly useful in quantum computing and quantum simulation scenes.
arXiv Detail & Related papers (2023-07-11T20:07:03Z) - Steady-state quantum chaos in open quantum systems [0.0]
We introduce the notion of steady-state quantum chaos as a general phenomenon in open quantum many-body systems.
Chaos and integrability in the steady state of an open quantum system are instead uniquely determined by the spectral structure of the time evolution generator.
We study steady-state chaos in the driven-dissipative Bose-Hubbard model, a paradigmatic example of out-of-equilibrium bosonic system without particle number conservation.
arXiv Detail & Related papers (2023-05-24T18:00:22Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Quantum behavior of a superconducting Duffing oscillator at the
dissipative phase transition [0.817918559522319]
We reconcile the classical and quantum descriptions in a unified picture of quantum metastability.
By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition.
Results reveal a smooth quantum evolution behind a sudden dissipative transition.
arXiv Detail & Related papers (2022-06-13T17:35:27Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.