Parametric Amplification of an Optomechanical Quantum Interconnect
- URL: http://arxiv.org/abs/2202.12291v3
- Date: Sat, 15 Oct 2022 05:09:53 GMT
- Title: Parametric Amplification of an Optomechanical Quantum Interconnect
- Authors: Huo Chen, Marti Vives and Mekena Metcalf
- Abstract summary: Connecting superconducting qubits to optical fiber necessitates the conversion of microwave photons to optical photons.
Modern experimental demonstrations exhibit strong coupling between a microwave resonator and an optical cavity mediated through phononic modes.
We propose a theoretical framework for time-dependent control of the driving lasers based on the input-output formalism of quantum optics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connecting superconducting qubits to optical fiber necessitates the
conversion of microwave photons to optical photons. Modern experimental
demonstrations exhibit strong coupling between a microwave resonator and an
optical cavity mediated through phononic modes in a mechanical oscillator. This
paradigmatic transduction experiment is bounded by a theoretical efficiency
with constant driving amplitudes on the electromagnetic resonators. By adding a
parametric drive to the microwave resonator and optical cavity we discover the
converted signal through the quantum transducer is amplified, while maintaining
a lower level of the added noise. We propose a theoretical framework for
time-dependent control of the driving lasers based on the input-output
formalism of quantum optics, and solve analytically the transduction efficiency
and added noise when the control signals parametrically drive the system. Our
results show better transduction efficiency and lower added noise in varying
parameter regimes relevant to current transduction experiments.
Related papers
- Efficiently catching entangled microwave photons from a quantum transducer with shaped optical pumps [0.0]
Quantum transducer provides a practical way of coherently connecting optical communication channels and microwave quantum processors.
Recent experiments on quantum transducer verifying entanglement between microwave and optical photons show the promise of approaching that goal.
To efficiently capture or detect a single microwave photon with arbitrary time profile remains challenging.
arXiv Detail & Related papers (2024-09-09T23:31:15Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Principles for Optimizing Quantum Transduction in Piezo-Optomechanical Systems [0.0]
Two-way microwave-optical quantum transduction essential to connecting distant superconducting qubits via optical fiber.
Two-way quantum transducer converts between microwave photons and telecom-band photons by way of intermediary GHz-band phonon mode.
In this work, we examine both the piezoelectric, and optomechanical interactions from first principles, and together with the evanescent coupling between optical modes, discuss what parameters matter most in optimizing this kind of quantum transducer.
arXiv Detail & Related papers (2023-12-07T20:14:37Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Quantum transduction of optical photons from a superconducting qubit [0.0]
We demonstrate the conversion of a microwave-frequency excitation of a superconducting transmon qubit into an optical photon.
With proposed improvements in the device and external measurement set-up, such quantum transducers may lead to practical devices capable of realizing new hybrid quantum networks.
arXiv Detail & Related papers (2020-04-09T22:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.