論文の概要: Time Efficient Training of Progressive Generative Adversarial Network
using Depthwise Separable Convolution and Super Resolution Generative
Adversarial Network
- arxiv url: http://arxiv.org/abs/2202.12337v1
- Date: Thu, 24 Feb 2022 19:53:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 16:16:08.662962
- Title: Time Efficient Training of Progressive Generative Adversarial Network
using Depthwise Separable Convolution and Super Resolution Generative
Adversarial Network
- Title(参考訳): Depthwise Separable Convolution と Super resolution Generative Adversarial Network を用いた進行生成逆数ネットワークの時間効率トレーニング
- Authors: Atharva Karwande, Pranesh Kulkarni, Tejas Kolhe, Akshay Joshi, Soham
Kamble
- Abstract要約: 本稿では,プログレッシブGANと若干の修正とスーパーレゾリューションGANを組み合わせた新しいパイプラインを提案する。
スーパーレゾリューションGANは低解像度画像を高解像度画像にサンプリングし、トレーニング時間を指数関数的に短縮するのに有用な資源であることが証明できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generative Adversarial Networks have been employed successfully to generate
high-resolution augmented images of size 1024^2. Although the augmented images
generated are unprecedented, the training time of the model is exceptionally
high. Conventional GAN requires training of both Discriminator as well as the
Generator. In Progressive GAN, which is the current state-of-the-art GAN for
image augmentation, instead of training the GAN all at once, a new concept of
progressing growing of Discriminator and Generator simultaneously, was
proposed. Although the lower stages such as 4x4 and 8x8 train rather quickly,
the later stages consume a tremendous amount of time which could take days to
finish the model training. In our paper, we propose a novel pipeline that
combines Progressive GAN with slight modifications and Super Resolution GAN.
Super Resolution GAN up samples low-resolution images to high-resolution images
which can prove to be a useful resource to reduce the training time
exponentially.
- Abstract(参考訳): 生成逆数ネットワークは1024^2の高解像度拡張画像の生成に成功している。
生成された拡張画像は前例がないが、モデルのトレーニング時間は例外的に高い。
従来のGANでは、ディスクリミネーターとジェネレータの両方の訓練が必要である。
画像増倍のための現在最先端のGANであるProgressive GANでは、GANを一度に訓練する代わりに、ディスクリミネータとジェネレータを同時に成長させる新しい概念が提案された。
4x4や8x8のような下段の列車は比較的速いが、後段の列車はモデルの訓練を完了するのに数日を要する膨大な時間を消費する。
本稿では,プログレッシブGANと若干の修正とスーパーレゾリューションGANを組み合わせた新しいパイプラインを提案する。
スーパーレゾリューションGANは低解像度画像を高解像度画像にサンプリングし、トレーニング時間を指数関数的に短縮するのに有用な資源であることが証明できる。
関連論文リスト
- A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
拡散モデルは,高忠実度画像生成のためのGAN(Generative Adversarial Network)の優れた代替品として登場した。
しかし、そのリアルタイム実現性は、遅いトレーニングと推論速度によって妨げられている。
本研究では,ウェーブレットを用いた単一画像超解法のための条件拡散GANスキームを提案する。
論文 参考訳(メタデータ) (2024-10-23T15:34:06Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
拡散モデルからGANを蒸留するプロセスは、より効率的にできるのか?
まず、一般化された特徴を持つベースGANモデルを構築し、微調整により異なる概念に適応し、スクラッチからトレーニングの必要性を排除した。
第2に,ベースモデル全体の微調整を行うのではなく,低ランク適応(LoRA)を簡易かつ効果的なランク探索プロセスで行う。
第3に、微調整に必要な最小限のデータ量を調査し、トレーニング時間を短縮する。
論文 参考訳(メタデータ) (2024-01-11T18:59:14Z) - ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with
Diffusion Models [126.35334860896373]
本研究では,事前学習した拡散モデルから,トレーニング画像サイズよりもはるかに高解像度で画像を生成する能力について検討する。
注意ベースや共同拡散アプローチのような、高分解能な生成のための既存の研究は、これらの問題にうまく対処できない。
本稿では,推論中の畳み込み知覚場を動的に調整できる簡易かつ効果的な再拡張法を提案する。
論文 参考訳(メタデータ) (2023-10-11T17:52:39Z) - A Survey on Leveraging Pre-trained Generative Adversarial Networks for
Image Editing and Restoration [72.17890189820665]
GAN(Generative Adversarial Network)は、単純だが効果的なトレーニング機構と優れた画像生成品質により、大きな注目を集めている。
近年のGANモデルは生成した画像と実際の画像とのギャップを大幅に狭めている。
近年の多くの研究は、未学習のGANモデルと学習されたGAN先行空間を生かして、事前学習されたGANモデルを活用することへの関心が高まっている。
論文 参考訳(メタデータ) (2022-07-21T05:05:58Z) - Projected GANs Converge Faster [50.23237734403834]
GAN(Generative Adversarial Networks)は高品質な画像を生成するが、訓練は難しい。
生成したサンプルと実際のサンプルを固定された事前訓練された特徴空間に投影することで、これらの問題に大きく取り組みます。
我々の投影GANは画像品質、サンプル効率、収束速度を改善する。
論文 参考訳(メタデータ) (2021-11-01T15:11:01Z) - Generative Adversarial Stacked Autoencoders [3.1829446824051195]
本稿では,GASCA(Generative Adversarial Stacked Convolutional Autoencoder)モデルを提案する。
本訓練では, 再建誤差がバニラ関節トレーニングよりも有意に低い画像を生成する。
論文 参考訳(メタデータ) (2020-11-22T17:51:59Z) - TinyGAN: Distilling BigGAN for Conditional Image Generation [2.8072597424460466]
BigGANはImageNetの画像生成の質を大幅に改善しましたが、巨大なモデルが必要で、リソースに制約のあるデバイスへのデプロイが困難になります。
本稿では,GANを圧縮するためのブラックボックス知識蒸留フレームワークを提案する。
教師ネットワークとしてBigGANを前提として、私たちは、インセプションとFIDスコアの競合的なパフォーマンスを達成するために、はるかに小さな学生ネットワークをトレーニングしました。
論文 参考訳(メタデータ) (2020-09-29T07:33:49Z) - Improving the Speed and Quality of GAN by Adversarial Training [87.70013107142142]
我々は,GAN訓練の高速化と品質向上を目的としたFastGANを開発した。
当社のトレーニングアルゴリズムは,2-4GPUを必要とすることによって,ImageNetのトレーニングを一般向けに提供しています。
論文 参考訳(メタデータ) (2020-08-07T20:21:31Z) - Autoencoding Generative Adversarial Networks [0.0]
本稿では,所定の潜在空間と与えられたサンプル空間とのマッピングを学習する4ネットワークモデルを提案する。
AEGAN技術は、トレーニング安定化、モード崩壊防止、実際のサンプル間の直接反転など、一般的なGANトレーニングにいくつかの改善を提供する。
論文 参考訳(メタデータ) (2020-04-11T19:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。