論文の概要: Standard Deviation-Based Quantization for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2202.12422v1
- Date: Thu, 24 Feb 2022 23:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 14:13:54.949942
- Title: Standard Deviation-Based Quantization for Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークの標準偏差に基づく量子化
- Authors: Amir Ardakani, Arash Ardakani, Brett Meyer, James J. Clark, Warren J.
Gross
- Abstract要約: 深層ニューラルネットワークの量子化は、推論コストを低減するための有望なアプローチである。
ネットワークの重みと活性化分布の知識を用いて量子化間隔(離散値)を学習する新しいフレームワークを提案する。
提案手法は,ネットワークのパラメータを同時に推定し,量子化過程におけるプルーニング比を柔軟に調整する。
- 参考スコア(独自算出の注目度): 17.495852096822894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization of deep neural networks is a promising approach that reduces the
inference cost, making it feasible to run deep networks on resource-restricted
devices. Inspired by existing methods, we propose a new framework to learn the
quantization intervals (discrete values) using the knowledge of the network's
weight and activation distributions, i.e., standard deviation. Furthermore, we
propose a novel base-2 logarithmic quantization scheme to quantize weights to
power-of-two discrete values. Our proposed scheme allows us to replace
resource-hungry high-precision multipliers with simple shift-add operations.
According to our evaluations, our method outperforms existing work on CIFAR10
and ImageNet datasets and even achieves better accuracy performance with 3-bit
weights and activations when compared to the full-precision models. Moreover,
our scheme simultaneously prunes the network's parameters and allows us to
flexibly adjust the pruning ratio during the quantization process.
- Abstract(参考訳): ディープニューラルネットワークの量子化は、推論コストを削減し、リソース制限されたデバイス上でディープネットワークの実行を可能にする、有望なアプローチである。
既存の手法に着想を得て,ネットワークの重みと活性化分布,すなわち標準偏差の知識を用いて,量子化間隔(離散値)を学習する新しいフレームワークを提案する。
さらに,重みを2つの離散値に量子化する新しい基底2対数量子化スキームを提案する。
提案手法により,資源不足の高精度乗算器を簡単なシフト加算演算で置き換えることができる。
評価の結果,提案手法はCIFAR10およびImageNetデータセットの既存の作業よりも優れており,全精度モデルと比較した場合の3ビット重みとアクティベーションの精度も向上することがわかった。
さらに,提案手法はネットワークのパラメータを同時にプルーニングし,量子化過程におけるプルーニング率を柔軟に調整する。
関連論文リスト
- Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
本稿では,重みの量子化誤差を低減するために,粗大かつ微細な重み分割法(CFWS)を提案する。
我々は、活性化のための最適な量子化尺度を決定するために改良されたKLメトリックを開発した。
例えば、量子化されたRepVGG-A1モデルは、わずか0.3%の精度損失を示す。
論文 参考訳(メタデータ) (2023-12-17T02:31:20Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
量子化は、与えられたニューラルネットワークの高精度ウェイトとアクティベーションを、メモリ使用量と計算量を減らすために、低精度ウェイト/アクティベーションに変換することを目的としている。
コンパクトに設計されたバックボーンアーキテクチャの極端量子化(1ビットの重み/1ビットのアクティベーション)は、深刻な性能劣化をもたらす。
本稿では,性能劣化を効果的に緩和する新しいQAT法を提案する。
論文 参考訳(メタデータ) (2022-07-04T13:25:49Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
本稿では,低ビット幅重みとアクティベーションで深部畳み込みニューラルネットワークを訓練する2つの新しい手法を提案する。
まず、ビット幅の少ない重みを得るため、既存の方法の多くは、全精度ネットワーク重みで量子化することにより量子化重みを得る。
第二に、低ビット幅のアクティベーションを得るために、既存の作品はすべてのチャネルを等しく考慮する。
論文 参考訳(メタデータ) (2020-12-26T15:21:18Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - Optimal Quantization for Batch Normalization in Neural Network
Deployments and Beyond [18.14282813812512]
バッチ正規化(BN)が量子ニューラルネットワーク(QNN)に挑戦
本稿では、2つの浮動小数点のアフィン変換を共有量子化スケールで固定点演算に変換することによりBNを定量化する新しい方法を提案する。
提案手法は,CIFARおよびImageNetデータセット上の層レベルでの実験により検証される。
論文 参考訳(メタデータ) (2020-08-30T09:33:29Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
トレーニング後の量子化に対するロバスト性を改善するための単純な正規化スキームを導出する。
量子化対応ネットワークをトレーニングすることにより、異なるビット幅にオンデマンドで量子化できる1組の重みを格納できる。
論文 参考訳(メタデータ) (2020-02-18T12:31:34Z) - Switchable Precision Neural Networks [35.2752928147013]
複数の量子化レベルで動作可能な共有ネットワークをトレーニングするために,スイッチブル精密ニューラルネットワーク(SP-Nets)を提案する。
実行時に、ネットワークは、インスタントメモリ、レイテンシ、消費電力、精度要求に応じて、オンザフライで精度を調整することができる。
論文 参考訳(メタデータ) (2020-02-07T14:43:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。