論文の概要: Deep Learning, Natural Language Processing, and Explainable Artificial
Intelligence in the Biomedical Domain
- arxiv url: http://arxiv.org/abs/2202.12678v1
- Date: Fri, 25 Feb 2022 13:30:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 13:43:52.425097
- Title: Deep Learning, Natural Language Processing, and Explainable Artificial
Intelligence in the Biomedical Domain
- Title(参考訳): 生物医学領域におけるディープラーニング・自然言語処理・説明可能な人工知能
- Authors: Milad Moradi, Matthias Samwald
- Abstract要約: まず、人工知能とその生物学および医学への応用について紹介する。
次に、深層学習法を第2節で説明する。
第3節では、自然言語処理とその生物医学領域への応用について記述する。
第4節では、説明可能な人工知能について紹介し、人工知能システムの説明可能性の重要性について論じる。
- 参考スコア(独自算出の注目度): 12.323983512532651
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this article, we first give an introduction to artificial intelligence and
its applications in biology and medicine in Section 1. Deep learning methods
are then described in Section 2. We narrow down the focus of the study on
textual data in Section 3, where natural language processing and its
applications in the biomedical domain are described. In Section 4, we give an
introduction to explainable artificial intelligence and discuss the importance
of explainability of artificial intelligence systems, especially in the
biomedical domain.
- Abstract(参考訳): 本稿では,まず人工知能とその生物学・医学への応用について紹介する。
1. ディープラーニングの方法は、次に、セクションで説明します。
2) 本研究は第3節におけるテキストデータ研究の焦点を絞ったもので, 自然言語処理とそのバイオメディカル分野への応用について述べる。
第4節では、説明可能な人工知能について紹介し、特に生物医学領域における人工知能システムの説明可能性の重要性について論じる。
関連論文リスト
- Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
生物分子モデリングと自然言語(BL)の統合は、人工知能、化学、生物学の交差点において有望な学際領域として現れてきた。
生体分子と自然言語の相互モデリングによって達成された最近の進歩について分析する。
論文 参考訳(メタデータ) (2024-03-03T14:59:47Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Understanding CNN Hidden Neuron Activations Using Structured Background
Knowledge and Deductive Reasoning [3.6223658572137825]
最先端技術は、隠されたノードのアクティベーションが、場合によっては人間にとって意味のある方法で解釈可能であることを示している。
畳み込みニューラルネットワークの高密度層において,背景知識から意味のあるラベルを個々のニューロンに自動的にアタッチできることを示す。
論文 参考訳(メタデータ) (2023-08-08T02:28:50Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Ontology-based Feature Selection: A Survey [0.6767885381740952]
調査の目的は、テキスト、画像、データベース、専門知識からの知識抽出の重要な側面に関する洞察を提供することである。
提示された例は、医療、観光、機械工学、土木工学など、さまざまなアプリケーションドメインにまたがる。
論文 参考訳(メタデータ) (2021-04-15T19:03:31Z) - Neurocognitive Informatics Manifesto [0.0]
インフォマティクスは自然情報システムと人工情報システムの構造のあらゆる側面を研究する。
神経認知情報学は、人工および自然系のマッチングを改善するのに役立つ新しい分野です。
論文 参考訳(メタデータ) (2021-01-10T19:20:15Z) - Understanding Information Processing in Human Brain by Interpreting
Machine Learning Models [1.14219428942199]
この論文は、ニューラルネットワークの直感的な計算モデルを作成する上で、機械学習メソッドが果たす役割を探求している。
この視点は、コンピュータ神経科学に対する探索的およびデータ駆動のアプローチが果たす大きな役割を支持する。
論文 参考訳(メタデータ) (2020-10-17T04:37:26Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Morphological Computation and Learning to Learn In Natural Intelligent
Systems And AI [2.487445341407889]
深層学習のアルゴリズムは、脳機能に関する私たちの不完全な知識にもかかわらず、自然、特に人間の脳からインスピレーションを受けています。
問題は、開発段階での計算的性質からインスピレーションを得られることは、ディープラーニングに何をもたらすのか、そして機械学習におけるモデルと実験が、神経科学と認知科学の研究を動機づけ、正当化し、導くことができるのかである。
論文 参考訳(メタデータ) (2020-04-05T20:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。