論文の概要: Attention-based Cross-Layer Domain Alignment for Unsupervised Domain
Adaptation
- arxiv url: http://arxiv.org/abs/2202.13310v1
- Date: Sun, 27 Feb 2022 08:36:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 16:39:56.599843
- Title: Attention-based Cross-Layer Domain Alignment for Unsupervised Domain
Adaptation
- Title(参考訳): 非教師なしドメイン適応のための注意に基づくクロスレイヤードメインアライメント
- Authors: Xu Ma, Junkun Yuan, Yen-wei Chen, Ruofeng Tong, Lanfen Lin
- Abstract要約: 教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインから伝達可能な知識を学び、トレーニングされたモデルをラベルなしターゲットドメインに適応させることを目的としている。
1つの一般的な戦略は、ディープモデルによって抽出されたセマンティックな特徴を整合させることで、分布の相違を最小限にすることである。
- 参考スコア(独自算出の注目度): 14.65316832227658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) aims to learn transferable knowledge
from a labeled source domain and adapts a trained model to an unlabeled target
domain. To bridge the gap between source and target domains, one prevailing
strategy is to minimize the distribution discrepancy by aligning their semantic
features extracted by deep models. The existing alignment-based methods mainly
focus on reducing domain divergence in the same model layer. However, the same
level of semantic information could distribute across model layers due to the
domain shifts. To further boost model adaptation performance, we propose a
novel method called Attention-based Cross-layer Domain Alignment (ACDA), which
captures the semantic relationship between the source and target domains across
model layers and calibrates each level of semantic information automatically
through a dynamic attention mechanism. An elaborate attention mechanism is
designed to reweight each cross-layer pair based on their semantic similarity
for precise domain alignment, effectively matching each level of semantic
information during model adaptation. Extensive experiments on multiple
benchmark datasets consistently show that the proposed method ACDA yields
state-of-the-art performance.
- Abstract(参考訳): unsupervised domain adaptation(uda)は、ラベル付きソースドメインから転送可能な知識を学習し、ラベルなしのターゲットドメインにトレーニングされたモデルを適用することを目的としている。
ソースドメインとターゲットドメインのギャップを埋めるためには、ディープモデルによって抽出されたセマンティックな特徴を整合させることで、分散の相違を最小化する。
既存のアライメントベースの手法は、主に同じモデル層におけるドメインの発散を減らすことに重点を置いている。
しかし、ドメインシフトのため、同じレベルのセマンティック情報がモデル層に分散する可能性がある。
モデル適応性能をさらに高めるために,モデルレイヤ間のソースドメインとターゲットドメイン間の意味関係をキャプチャし,動的注意機構により各意味情報のレベルを自動調整するattention-based cross-layer domain alignment(acda)という新しい手法を提案する。
ドメインアライメントを正確にするための意味的類似性に基づいて、各層間のペアの重み付けを設計し、モデル適応時の意味的情報のレベルを効果的にマッチングする。
複数のベンチマークデータセットに対する広範囲な実験は、提案手法が最先端のパフォーマンスをもたらすことを一貫して示している。
関連論文リスト
- Conditional Support Alignment for Domain Adaptation with Label Shift [8.819673391477034]
アンラベルド・ドメイン適応(アンラベルド・ドメイン・アダプティブ、Unlabelled Domain adapt、UDA)とは、学習モデルを、ソース・ドメインのラベル付きサンプルと対象ドメインの教師なしサンプルに基づいて訓練するドメイン適応フレームワークである。
本稿では,対象領域の特徴表現分布に対する条件対称的サポートのばらつきを最小限に抑えることを目的とした,新しい条件逆サポートアライメント(CASA)を提案する。
論文 参考訳(メタデータ) (2023-05-29T05:20:18Z) - Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA)は、訓練済みのソースモデルから学習した知識を未確認のターゲットドメインに転送することで、ドメイン適応問題を解決することを目的としている。
既存のほとんどのメソッドは、機能プロトタイプを生成することによって、ターゲットデータに擬似ラベルを割り当てる。
本稿では,PCSRと命名された新しいフレームワークを,クラス内多中心クラスタリングおよび構造規則化戦略を通じてSFDAに取り組むために提案する。
論文 参考訳(メタデータ) (2022-10-14T02:20:48Z) - Generative Domain Adaptation for Face Anti-Spoofing [38.12738183385737]
教師なしドメイン適応(UDA)に基づくアンチスプーフィングアプローチは、ターゲットシナリオに対する有望なパフォーマンスのために注目を集めている。
既存のUDA FASメソッドは、通常、セマンティックな高レベルの機能の分布を整列することで、トレーニングされたモデルをターゲットドメインに適合させる。
対象データをモデルに直接適合させ、画像翻訳により対象データをソースドメインスタイルにスタイリングし、さらに、訓練済みのソースモデルにスタイリングされたデータを入力して分類する、UDA FASの新しい視点を提案する。
論文 参考訳(メタデータ) (2022-07-20T16:24:57Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
我々は、FGRR(Fearground-aware Graph-based Reasoning)というドメインDのための新しい汎用フレームワークを提案する。
FGRRはグラフ構造を検出パイプラインに組み込んで、ドメイン内およびドメイン間フォアグラウンドオブジェクト関係を明示的にモデル化する。
実験の結果、提案したFGRRは4つのDomainDベンチマークの最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-06-06T05:12:48Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
セマンティックセグメンテーションのための教師なしドメイン適応は、合成データに基づいて訓練されたモデルを実際の画像に適応させることを目的としている。
従来の特徴レベルの対数学習手法は、高レベルの意味的特徴に適応するモデルのみを考慮していた。
本稿では,ドメイン間ギャップが小さい低レベルエッジ情報を明示的に利用して意味情報の伝達をガイドする試みについて紹介する。
論文 参考訳(メタデータ) (2021-09-18T11:51:31Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
ソースとターゲットドメイン間のギャップを増やすことで、ドメイン適応はより難しくなります。
中間領域のモデルを学習する補助モデル(AuxSelfTrain)の自己学習を提案する。
教師なしおよび半教師付きドメイン適応のベンチマークデータセットの実験は、その有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:15:25Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
教師なしのドメイン適応は、確立されたソースドメイン情報に依存するラベルなしのターゲットドメインを促進する。
従来の手法では、潜在空間におけるドメインの不一致を強制的に低減することで、本質的なデータ構造が破壊される。
本稿では、2つの中間領域をブリッジソースとターゲットドメインに補間する一貫した分類器を用いた双方向生成ドメイン適応モデルを提案する。
論文 参考訳(メタデータ) (2020-02-12T09:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。