A Unified Wasserstein Distributional Robustness Framework for
Adversarial Training
- URL: http://arxiv.org/abs/2202.13437v1
- Date: Sun, 27 Feb 2022 19:40:29 GMT
- Title: A Unified Wasserstein Distributional Robustness Framework for
Adversarial Training
- Authors: Tuan Anh Bui, Trung Le, Quan Tran, He Zhao, Dinh Phung
- Abstract summary: This paper presents a unified framework that connects Wasserstein distributional robustness with current state-of-the-art AT methods.
We introduce a new Wasserstein cost function and a new series of risk functions, with which we show that standard AT methods are special cases of their counterparts in our framework.
This connection leads to an intuitive relaxation and generalization of existing AT methods and facilitates the development of a new family of distributional robustness AT-based algorithms.
- Score: 24.411703133156394
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is well-known that deep neural networks (DNNs) are susceptible to
adversarial attacks, exposing a severe fragility of deep learning systems. As
the result, adversarial training (AT) method, by incorporating adversarial
examples during training, represents a natural and effective approach to
strengthen the robustness of a DNN-based classifier. However, most AT-based
methods, notably PGD-AT and TRADES, typically seek a pointwise adversary that
generates the worst-case adversarial example by independently perturbing each
data sample, as a way to "probe" the vulnerability of the classifier. Arguably,
there are unexplored benefits in considering such adversarial effects from an
entire distribution. To this end, this paper presents a unified framework that
connects Wasserstein distributional robustness with current state-of-the-art AT
methods. We introduce a new Wasserstein cost function and a new series of risk
functions, with which we show that standard AT methods are special cases of
their counterparts in our framework. This connection leads to an intuitive
relaxation and generalization of existing AT methods and facilitates the
development of a new family of distributional robustness AT-based algorithms.
Extensive experiments show that our distributional robustness AT algorithms
robustify further their standard AT counterparts in various settings.
Related papers
- Improving Adversarial Training using Vulnerability-Aware Perturbation
Budget [7.430861908931903]
Adversarial Training (AT) effectively improves the robustness of Deep Neural Networks (DNNs) to adversarial attacks.
We propose two simple, computationally cheap vulnerability-aware reweighting functions for assigning perturbation bounds to adversarial examples used for AT.
Experimental results show that the proposed methods yield genuine improvements in the robustness of AT algorithms against various adversarial attacks.
arXiv Detail & Related papers (2024-03-06T21:50:52Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
Adversarial training (AT) is often adopted to improve the robustness of deep neural networks (DNNs)
In this work, we propose an approach based on Jacobian norm and Selective Input Gradient Regularization (J- SIGR)
Experiments demonstrate that the proposed J- SIGR confers improved robustness against transferred adversarial attacks, and we also show that the predictions from the neural network are easy to interpret.
arXiv Detail & Related papers (2022-07-09T01:06:41Z) - Adversarial Vulnerability of Randomized Ensembles [12.082239973914326]
We show that randomized ensembles are more vulnerable to imperceptible adversarial perturbations than even standard AT models.
We propose a theoretically-sound and efficient adversarial attack algorithm (ARC) capable of compromising random ensembles even in cases where adaptive PGD fails to do so.
arXiv Detail & Related papers (2022-06-14T10:37:58Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Alleviating Robust Overfitting of Adversarial Training With Consistency
Regularization [9.686724616328874]
Adversarial training (AT) has proven to be one of the most effective ways to defend Deep Neural Networks (DNNs) against adversarial attacks.
robustness will drop sharply at a certain stage, always exists during AT.
consistency regularization, a popular technique in semi-supervised learning, has a similar goal as AT and can be used to alleviate robust overfitting.
arXiv Detail & Related papers (2022-05-24T03:18:43Z) - Self-Progressing Robust Training [146.8337017922058]
Current robust training methods such as adversarial training explicitly uses an "attack" to generate adversarial examples.
We propose a new framework called SPROUT, self-progressing robust training.
Our results shed new light on scalable, effective and attack-independent robust training methods.
arXiv Detail & Related papers (2020-12-22T00:45:24Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.