論文の概要: Anti-Malware Sandbox Games
- arxiv url: http://arxiv.org/abs/2202.13520v1
- Date: Mon, 28 Feb 2022 03:12:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 17:26:24.784888
- Title: Anti-Malware Sandbox Games
- Title(参考訳): アンチマルウェアサンドボックスゲーム
- Authors: Sujoy Sikdar, Sikai Ruan, Qishen Han, Paween Pitimanaaree, Jeremy
Blackthorne, Bulent Yener, Lirong Xia
- Abstract要約: 我々は,最先端のサンドボックス法を用いたマルウェア保護のゲーム理論モデルを開発した。
我々は,アンチマルウェアに対する最適な防御戦略を特徴付け,計算する。
- 参考スコア(独自算出の注目度): 26.28124922376012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a game theoretic model of malware protection using the
state-of-the-art sandbox method, to characterize and compute optimal defense
strategies for anti-malware. We model the strategic interaction between
developers of malware (M) and anti-malware (AM) as a two player game, where AM
commits to a strategy of generating sandbox environments, and M responds by
choosing to either attack or hide malicious activity based on the environment
it senses. We characterize the condition for AM to protect all its machines,
and identify conditions under which an optimal AM strategy can be computed
efficiently. For other cases, we provide a quadratically constrained quadratic
program (QCQP)-based optimization framework to compute the optimal AM strategy.
In addition, we identify a natural and easy to compute strategy for AM, which
as we show empirically, achieves AM utility that is close to the optimal AM
utility, in equilibrium.
- Abstract(参考訳): 我々は,最先端サンドボックス法を用いたマルウェア保護のゲーム理論モデルを開発し,マルウェア対策の最適防御戦略を特徴付け,計算する。
我々は、マルウェア(M)とアンチマルウェア(AM)の開発者間の戦略的相互作用を2つのプレイヤーゲームとしてモデル化し、AMはサンドボックス環境を生成する戦略にコミットし、Mは検知した環境に基づいて悪意あるアクティビティを攻撃または隠蔽するかを選択することで応答する。
我々は、AMが全マシンを保護する条件を特徴付け、最適なAM戦略を効率的に計算できる条件を特定する。
他のケースでは、最適am戦略を計算するために二次制約付き二次プログラム(qcqp)ベースの最適化フレームワークを提供する。
さらに、実験的に示すように、最適な AM ユーティリティに近い AM ユーティリティを平衡で達成する AM の自然で容易に計算できる戦略を同定する。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Strategy Synthesis in Markov Decision Processes Under Limited Sampling
Access [3.441021278275805]
グレーボックスマルコフ決定プロセス(MDP)によってモデル化された環境において、エージェントの作用の影響は後継状態の点で知られているが、関連する合成は知られていない。
本稿では,区間型MDPを内部モデルとして用いた強化学習により,グレーボックス型MDPの戦略アルゴリズムを考案する。
論文 参考訳(メタデータ) (2023-03-22T16:58:44Z) - Implicit Poisoning Attacks in Two-Agent Reinforcement Learning:
Adversarial Policies for Training-Time Attacks [21.97069271045167]
標的毒攻撃では、攻撃者はエージェントと環境の相互作用を操作して、ターゲットポリシーと呼ばれる利害政策を採用するように強制する。
本研究では,攻撃者がエージェントの有効環境を暗黙的に毒殺する2エージェント環境での標的毒殺攻撃について,仲間の方針を変更して検討した。
最適な攻撃を設計するための最適化フレームワークを開発し、攻撃のコストは、ピアエージェントが想定するデフォルトポリシーからどの程度逸脱するかを測定する。
論文 参考訳(メタデータ) (2023-02-27T14:52:15Z) - Learning Near-Optimal Intrusion Responses Against Dynamic Attackers [0.0]
自動侵入応答について検討し,攻撃者とディフェンダーとの相互作用を最適な停止ゲームとして定式化する。
準最適ディフェンダー戦略を得るために,近似を用いてナッシュリリアを学習する架空のセルフプレイアルゴリズムを開発した。
このアプローチは、実用的なITインフラストラクチャのための効果的なディフェンダー戦略を生み出すことができる、と私たちは主張する。
論文 参考訳(メタデータ) (2023-01-11T16:36:24Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Learning Security Strategies through Game Play and Optimal Stopping [0.0]
強化学習を用いた自動侵入防止について検討した。
我々は攻撃者とディフェンダーとの相互作用を最適な停止ゲームとして定式化する。
最適なディフェンダー戦略を得るために,架空の自己再生アルゴリズムであるT-FPを導入する。
論文 参考訳(メタデータ) (2022-05-29T15:30:00Z) - Mixed Strategies for Security Games with General Defending Requirements [37.02840909260615]
Stackelbergのセキュリティゲームはディフェンダーとアタッカーの間で行われ、ディフェンダーは複数のターゲットに限られたリソースを割り当てる必要がある。
そこで本研究では,ごく少数の戦略のみを用いる混合戦略を計算し,効率的な近似パチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-26T08:56:39Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
フェデレーテッド・ラーニング(FL)はパラメータ伝達中にFLモデルに対する外部攻撃に対して脆弱である。
本稿では,最先端の防御アグリゲーション機構に対処する有効なMPアルゴリズムを提案する。
実験の結果,提案したCMPアルゴリズムは,既存の攻撃機構よりも効果的で,かなり優れていることが示された。
論文 参考訳(メタデータ) (2021-01-28T03:28:18Z) - Effective Unsupervised Domain Adaptation with Adversarially Trained
Language Models [54.569004548170824]
注意的なマスキング戦略は、マスキングされた言語モデルの知識ギャップを橋渡しできることを示す。
本稿では,これらのトークンを逆さまにマスキングすることで効果的なトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-10-05T01:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。