Did AI get more negative recently?
- URL: http://arxiv.org/abs/2202.13610v3
- Date: Thu, 29 Jun 2023 08:53:07 GMT
- Title: Did AI get more negative recently?
- Authors: Dominik Beese and Beg\"um Altunba\c{s} and G\"orkem G\"uzeler and
Steffen Eger
- Abstract summary: We classify scientific articles in the domain of natural language processing (NLP) and machine learning (ML) as core subfields of artificial intelligence (AI)
We refer to contributions under (i) as having a 'positive stance' and contributions under (ii) as having a 'negative stance'
We analyse large-scale trends on over 41 k papers from the last approximately 35 years in NLP and ML, finding that papers have become substantially more positive over time, but negative papers also got more negative and we observe considerably more negative papers in recent years.
- Score: 17.610382230820395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we classify scientific articles in the domain of natural
language processing (NLP) and machine learning (ML), as core subfields of
artificial intelligence (AI), into whether (i) they extend the current
state-of-the-art by the introduction of novel techniques which beat existing
models or whether (ii) they mainly criticize the existing state-of-the-art,
i.e. that it is deficient with respect to some property (e.g. wrong evaluation,
wrong datasets, misleading task specification). We refer to contributions under
(i) as having a 'positive stance' and contributions under (ii) as having a
'negative stance' (to related work). We annotate over 1.5 k papers from NLP and
ML to train a SciBERT-based model to automatically predict the stance of a
paper based on its title and abstract. We then analyse large-scale trends on
over 41 k papers from the last approximately 35 years in NLP and ML, finding
that papers have become substantially more positive over time, but negative
papers also got more negative and we observe considerably more negative papers
in recent years. Negative papers are also more influential in terms of
citations they receive.
Related papers
- From Words to Worth: Newborn Article Impact Prediction with LLM [69.41680520058418]
This paper introduces a promising approach, leveraging the capabilities of fine-tuned LLMs to predict the future impact of newborn articles.
A comprehensive dataset has been constructed and released for fine-tuning the LLM, containing over 12,000 entries with corresponding titles, abstracts, and TNCSI_SP.
arXiv Detail & Related papers (2024-08-07T17:52:02Z) - Eliminating Position Bias of Language Models: A Mechanistic Approach [119.34143323054143]
Position bias has proven to be a prevalent issue of modern language models (LMs)
Our mechanistic analysis attributes the position bias to two components employed in nearly all state-of-the-art LMs: causal attention and relative positional encodings.
By eliminating position bias, models achieve better performance and reliability in downstream tasks, including LM-as-a-judge, retrieval-augmented QA, molecule generation, and math reasoning.
arXiv Detail & Related papers (2024-07-01T09:06:57Z) - NLLG Quarterly arXiv Report 09/23: What are the most influential current
AI Papers? [21.68589129842815]
The US dominates among both top-40 and top-9k papers, followed by China.
Europe clearly lags behind and is hardly represented in the top-40 most cited papers.
US industry is largely overrepresented in the top-40 most influential papers.
arXiv Detail & Related papers (2023-12-09T21:42:20Z) - CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCite is a new way to measure the significance of a paper by assessing the causal impact of the paper on its follow-up papers.
It is based on a novel causal inference method, TextMatch, which adapts the traditional matching framework to high-dimensional text embeddings.
We demonstrate the effectiveness of CausalCite on various criteria, such as high correlation with paper impact as reported by scientific experts.
arXiv Detail & Related papers (2023-11-05T23:09:39Z) - NLLG Quarterly arXiv Report 06/23: What are the most influential current
AI Papers? [15.830129136642755]
The objective is to offer a quick guide to the most relevant and widely discussed research, aiding both newcomers and established researchers in staying abreast of current trends.
We observe the dominance of papers related to Large Language Models (LLMs) and specifically ChatGPT during the first half of 2023.
NLP related papers are the most influential (around 60% of top papers) even though there are twice as many ML related papers in our data.
arXiv Detail & Related papers (2023-07-31T11:53:52Z) - Forgotten Knowledge: Examining the Citational Amnesia in NLP [63.13508571014673]
We show how far back in time do we tend to go to cite papers? How has that changed over time, and what factors correlate with this citational attention/amnesia?
We show that around 62% of cited papers are from the immediate five years prior to publication, whereas only about 17% are more than ten years old.
We show that the median age and age diversity of cited papers were steadily increasing from 1990 to 2014, but since then, the trend has reversed, and current NLP papers have an all-time low temporal citation diversity.
arXiv Detail & Related papers (2023-05-29T18:30:34Z) - A Major Obstacle for NLP Research: Let's Talk about Time Allocation! [25.820755718678786]
This paper argues that we have been less successful than we should have been in the field of natural language processing.
We demonstrate that, in recent years, subpar time allocation has been a major obstacle for NLP research.
arXiv Detail & Related papers (2022-11-30T10:00:12Z) - Geographic Citation Gaps in NLP Research [63.13508571014673]
This work asks a series of questions on the relationship between geographical location and publication success.
We first created a dataset of 70,000 papers from the ACL Anthology, extracted their meta-information, and generated their citation network.
We show that not only are there substantial geographical disparities in paper acceptance and citation but also that these disparities persist even when controlling for a number of variables such as venue of publication and sub-field of NLP.
arXiv Detail & Related papers (2022-10-26T02:25:23Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Examining Citations of Natural Language Processing Literature [31.87319293259599]
We show that only about 56% of the papers in AA are cited ten or more times.
CL Journal has the most cited papers, but its citation dominance has lessened in recent years.
papers on sentiment classification, anaphora resolution, and entity recognition have the highest median citations.
arXiv Detail & Related papers (2020-05-02T20:01:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.