論文の概要: Data-to-text Generation with Variational Sequential Planning
- arxiv url: http://arxiv.org/abs/2202.13756v1
- Date: Mon, 28 Feb 2022 13:17:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 16:50:37.007292
- Title: Data-to-text Generation with Variational Sequential Planning
- Title(参考訳): 変分順序計画を用いたデータ・テキスト生成
- Authors: Ratish Puduppully and Yao Fu and Mirella Lapata
- Abstract要約: 非言語的な入力からテキスト出力を生成することを目的としたデータ・ツー・テキスト生成の課題について考察する。
協調的かつ有意義な方法で高レベルの情報を整理する責任を負う計画要素を付加したニューラルモデルを提案する。
我々は、計画と生成のステップをインターリーブしながら、構造化された変動モデルで逐次、潜在計画を推測する。
- 参考スコア(独自算出の注目度): 74.3955521225497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of data-to-text generation, which aims to create textual
output from non-linguistic input. We focus on generating long-form text, i.e.,
documents with multiple paragraphs, and propose a neural model enhanced with a
planning component responsible for organizing high-level information in a
coherent and meaningful way. We infer latent plans sequentially with a
structured variational model, while interleaving the steps of planning and
generation. Text is generated by conditioning on previous variational decisions
and previously generated text. Experiments on two data-to-text benchmarks
(RotoWire and MLB) show that our model outperforms strong baselines and is
sample efficient in the face of limited training data (e.g., a few hundred
instances).
- Abstract(参考訳): 非言語的入力からテキスト出力を作成することを目的としたデータ対テキスト生成の課題について考察する。
我々は,複数段落の文書を長文で生成することに集中し,高レベル情報をコヒーレントで有意義な方法で整理する計画コンポーネントを付加したニューラルモデルを提案する。
我々は,計画と生成のステップをインターリーブしながら,構造化変分モデルを用いて潜在計画の逐次推定を行う。
テキストは、前の変分決定と以前に生成されたテキストの条件付けによって生成される。
2つのデータ・トゥ・テキスト・ベンチマーク(RotoWire と MLB)の実験では、我々のモデルは強いベースラインを上回り、限られたトレーニングデータ(例:数百のインスタンス)に直面してサンプル効率が良い。
関連論文リスト
- Stylized Data-to-Text Generation: A Case Study in the E-Commerce Domain [53.22419717434372]
本稿では,特定のスタイルに従ってコヒーレントテキストを生成することを目的とした新しいタスク,すなわちスタイル化されたデータ・テキスト生成を提案する。
このタスクは、生成されたテキストのロジック、構造化されていないスタイル参照、バイアスのあるトレーニングサンプルという3つの課題のため、簡単ではない。
本稿では,論理計画型データ埋め込み,マスク型スタイル埋め込み,非バイアス型スタイリングテキスト生成の3つのコンポーネントからなる,新しいスタイル付きデータ・テキスト生成モデルであるStyleD2Tを提案する。
論文 参考訳(メタデータ) (2023-05-05T03:02:41Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
テキスト生成の困難さによって決定される並べ替え順序でラベルのないデータを活用するために,カリキュラムベースの自己学習(CBST)を提案する。
提案手法は、微調整およびタスク適応型事前学習法より優れており、データ・テキスト・ジェネレーションのわずかな設定で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-06-06T16:11:58Z) - Event Transition Planning for Open-ended Text Generation [55.729259805477376]
オープンエンドテキスト生成タスクは、事前コンテキストに制限されたコヒーレントな継続を生成するためにモデルを必要とする。
オープンエンドテキスト生成におけるイベントを明示的にアレンジする新しい2段階手法を提案する。
我々のアプローチは、特別に訓練された粗大なアルゴリズムとして理解することができる。
論文 参考訳(メタデータ) (2022-04-20T13:37:51Z) - PLANET: Dynamic Content Planning in Autoregressive Transformers for
Long-form Text Generation [47.97523895218194]
本稿では,自己回帰型自己認識機構を利用してコンテンツ計画と表面実現を動的に行う新しい生成フレームワークを提案する。
本フレームワークは,単語のバッグをベースとした文レベルのセマンティックプランを維持するために,トランスフォーマーデコーダを潜在表現で強化する。
論文 参考訳(メタデータ) (2022-03-17T05:52:35Z) - DYPLOC: Dynamic Planning of Content Using Mixed Language Models for Text
Generation [10.477090501569284]
本稿では,少なくとも2つの課題に直面する長文意見テキスト生成の課題について検討する。
既存のニューラルジェネレーションモデルはコヒーレンスに欠けており、効率的なコンテンツプランニングが必要である。
DYPLOCは、混合言語モデルの新しい設計に基づいて出力を生成しながら、コンテンツの動的計画を行う生成フレームワークである。
論文 参考訳(メタデータ) (2021-06-01T20:56:10Z) - Data-to-text Generation with Macro Planning [61.265321323312286]
本稿では,マクロ計画段階のニューラルモデルと,従来の手法を連想させる生成段階を提案する。
提案手法は, 自動評価と人的評価の両面で, 競争ベースラインを上回っている。
論文 参考訳(メタデータ) (2021-02-04T16:32:57Z) - Outline to Story: Fine-grained Controllable Story Generation from
Cascaded Events [39.577220559911055]
長文のきめ細かい制御が可能な生成のためのテストベッドとして,"Outline to Story" (O2S) という新しいタスクを提案する。
次に、最新のキーワード抽出技術で構築された将来のベンチマーク用のデータセットを作成します。
論文 参考訳(メタデータ) (2021-01-04T08:16:21Z) - Data-to-Text Generation with Iterative Text Editing [3.42658286826597]
本稿では,反復的テキスト編集に基づく新しいデータ・テキスト生成手法を提案する。
まず、自明なテンプレートを用いてデータ項目をテキストに変換し、その後、文融合タスクのために訓練されたニューラルモデルにより結果のテキストを反復的に改善する。
モデルの出力は単純で、既製の事前訓練言語モデルで再帰的にフィルタリングされる。
論文 参考訳(メタデータ) (2020-11-03T13:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。