論文の概要: On Testability and Goodness of Fit Tests in Missing Data Models
- arxiv url: http://arxiv.org/abs/2203.00132v2
- Date: Sat, 10 Jun 2023 14:17:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 03:19:32.467640
- Title: On Testability and Goodness of Fit Tests in Missing Data Models
- Title(参考訳): 欠落データモデルにおける適合テストの検証可能性と良さについて
- Authors: Razieh Nabi, Rohit Bhattacharya
- Abstract要約: 我々は,データグラフィカルモデルが欠落している3つのクラスにおいて,テスト可能な意味に関する新たな洞察を提供する。
探索されたモデルのクラスは、シーケンシャルな非ランダムモデルと非ランダムモデルである。
- 参考スコア(独自算出の注目度): 7.52579126252489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Significant progress has been made in developing identification and
estimation techniques for missing data problems where modeling assumptions can
be described via a directed acyclic graph. The validity of results using such
techniques rely on the assumptions encoded by the graph holding true; however,
verification of these assumptions has not received sufficient attention in
prior work. In this paper, we provide new insights on the testable implications
of three broad classes of missing data graphical models, and design
goodness-of-fit tests for them. The classes of models explored are: sequential
missing-at-random and missing-not-at-random models which can be used for
modeling longitudinal studies with dropout/censoring, and a no self-censoring
model which can be applied to cross-sectional studies and surveys.
- Abstract(参考訳): モデリング仮定を有向非巡回グラフで記述できるデータ問題に対する識別と推定手法の開発において、重要な進展が見られた。
このような手法を用いた結果の妥当性は、グラフが真とする仮定に依存するが、これらの仮定の検証は、事前の作業において十分な注意を払われていない。
本稿では,データグラフィカルモデルが欠落している3つのクラスにおいて,テスト可能な意味に関する新たな知見を提供する。
探索されたモデルのクラスは、ドロップアウト/検閲による縦断的研究のモデリングに使用できるシーケンシャルな非ランダムモデルと、横断的な研究や調査に適用できる自己検閲モデルである。
関連論文リスト
- A Survey on Deep Learning-based Gaze Direction Regression: Searching for the State-of-the-art [0.0]
本稿では,頭部・眼像からの視線方向ベクトルの回帰に対する深層学習に基づく手法について検討する。
本稿では、入力データ、モデルのアーキテクチャ、モデルの監視に使用される損失関数に焦点をあてた、多数の公開手法について詳述する。
本稿では、視線方向回帰法を訓練し、評価するために使用できるデータセットのリストを示す。
論文 参考訳(メタデータ) (2024-10-22T15:07:07Z) - Uncertainty Quantification on Graph Learning: A Survey [28.256611457396158]
本研究は,GNNとPGMのモデルアーキテクチャ,トレーニング,推論における不確実性の定量化に対処する最近の研究について検討する。
本稿では,最新の手法を不確実性表現とハンドリングに整理することにより,グラフィカルモデルにおける現在の不確実性状況の概要を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-04-23T00:39:26Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
音声とグラフィックの情報を合理的に使用することは,中国語のスペルチェックに有効であることを示す。
モデルはテストセットのエラー分布に敏感であり、モデルの欠点を反映している。
一般的なベンチマークであるSIGHANは、モデルの性能を確実に評価できない。
論文 参考訳(メタデータ) (2023-07-25T17:02:38Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
実例が少ない事前学習言語モデルはラベル間に強い予測バイアスを示すことを示す。
わずかな微調整で予測バイアスを軽減できるが,本分析では,非タスク関連の特徴を捉えることで,モデルの性能向上を図っている。
これらの観察は、より少ない例でモデルのパフォーマンスを追求することは、病理学的予測行動を引き起こす可能性があることを警告する。
論文 参考訳(メタデータ) (2022-04-17T15:55:18Z) - Generalizability of Machine Learning Models: Quantitative Evaluation of
Three Methodological Pitfalls [1.3870303451896246]
いくつかの医用画像データセットを用いてランダムフォレストとディープ畳み込みニューラルネットワークモデルを実装した。
独立仮定の違反はモデル一般化可能性に大きく影響する可能性が示唆された。
不適切なパフォーマンス指標は誤った結論につながる可能性がある。
論文 参考訳(メタデータ) (2022-02-01T05:07:27Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - Debugging Tests for Model Explanations [18.073554618753395]
テストされたメソッドは、急激なバックグラウンドバグを診断することができるが、誤ってラベル付けされたトレーニング例を決定的に識別することはできない。
被験者は属性を用いて欠陥モデルを特定するのに失敗するが、主にモデル予測に頼っている。
論文 参考訳(メタデータ) (2020-11-10T22:23:25Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Symbolic Regression Driven by Training Data and Prior Knowledge [0.0]
シンボリック回帰では、分析モデルの探索は、トレーニングデータサンプルで観測された予測誤差によって純粋に駆動される。
本稿では、学習データと所望のモデルが示す特性の事前知識の両方によって駆動される多目的的シンボリック回帰手法を提案する。
論文 参考訳(メタデータ) (2020-04-24T19:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。