A Probabilistic Deep Image Prior for Computational Tomography
- URL: http://arxiv.org/abs/2203.00479v1
- Date: Mon, 28 Feb 2022 14:47:14 GMT
- Title: A Probabilistic Deep Image Prior for Computational Tomography
- Authors: Javier Antor\'an, Riccardo Barbano, Johannes Leuschner, Jos\'e Miguel
Hern\'andez-Lobato, Bangti Jin
- Abstract summary: Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty.
We construct a Bayesian prior for tomographic reconstruction, which combines the classical total variation (TV) regulariser with the modern deep image prior (DIP)
For the inference, we develop an approach based on the linearised Laplace method, which is scalable to high-dimensional settings.
- Score: 0.19573380763700707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep-learning based tomographic image reconstruction methods do not
provide accurate estimates of reconstruction uncertainty, hindering their
real-world deployment. To address this limitation, we construct a Bayesian
prior for tomographic reconstruction, which combines the classical total
variation (TV) regulariser with the modern deep image prior (DIP).
Specifically, we use a change of variables to connect our prior beliefs on the
image TV semi-norm with the hyper-parameters of the DIP network. For the
inference, we develop an approach based on the linearised Laplace method, which
is scalable to high-dimensional settings. The resulting framework provides
pixel-wise uncertainty estimates and a marginal likelihood objective for
hyperparameter optimisation. We demonstrate the method on synthetic and
real-measured high-resolution $\mu$CT data, and show that it provides superior
calibration of uncertainty estimates relative to previous probabilistic
formulations of the DIP.
Related papers
- MOSAIC: Masked Optimisation with Selective Attention for Image
Reconstruction [0.5541644538483947]
We propose a novel compressive sensing framework to reconstruct images given any random selection of measurements.
MOSAIC incorporates an embedding technique to efficiently apply attention mechanisms on an encoded sequence of measurements.
A range of experiments validate our proposed architecture as a promising alternative for existing CS reconstruction methods.
arXiv Detail & Related papers (2023-06-01T17:05:02Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Fast Scalable Image Restoration using Total Variation Priors and
Expectation Propagation [7.7731951589289565]
This paper presents a scalable approximate Bayesian method for image restoration using total variation (TV) priors.
We use the expectation propagation (EP) framework to approximate minimum mean squared error (MMSE) estimators and marginal (pixel-wise) variances.
arXiv Detail & Related papers (2021-10-04T17:28:41Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks.
Our approach is derived by introducing a learned error metric and a latent representation of the target image.
We validate our approach through comprehensive experiments on burst denoising and burst super-resolution datasets.
arXiv Detail & Related papers (2021-08-18T17:57:02Z) - Riggable 3D Face Reconstruction via In-Network Optimization [58.016067611038046]
This paper presents a method for riggable 3D face reconstruction from monocular images.
It jointly estimates a personalized face rig and per-image parameters including expressions, poses, and illuminations.
Experiments demonstrate that our method achieves SOTA reconstruction accuracy, reasonable robustness and generalization ability.
arXiv Detail & Related papers (2021-04-08T03:53:20Z) - Using Deep Image Priors to Generate Counterfactual Explanations [38.62513524757573]
A deep image prior (DIP) can be used to obtain pre-images from latent representation encodings.
We propose a novel regularization strategy based on an auxiliary loss estimator jointly trained with the predictor.
arXiv Detail & Related papers (2020-10-22T20:40:44Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Deep Probabilistic Feature-metric Tracking [27.137827823264942]
We propose a new framework to learn a pixel-wise deep feature map and a deep feature-metric uncertainty map.
CNN predicts a deep initial pose for faster and more reliable convergence.
Experimental results demonstrate state-of-the-art performances on the TUM RGB-D dataset and the 3D rigid object tracking dataset.
arXiv Detail & Related papers (2020-08-31T11:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.