Deep Reparametrization of Multi-Frame Super-Resolution and Denoising
- URL: http://arxiv.org/abs/2108.08286v1
- Date: Wed, 18 Aug 2021 17:57:02 GMT
- Title: Deep Reparametrization of Multi-Frame Super-Resolution and Denoising
- Authors: Goutam Bhat and Martin Danelljan and Fisher Yu and Luc Van Gool and
Radu Timofte
- Abstract summary: We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks.
Our approach is derived by introducing a learned error metric and a latent representation of the target image.
We validate our approach through comprehensive experiments on burst denoising and burst super-resolution datasets.
- Score: 167.42453826365434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a deep reparametrization of the maximum a posteriori formulation
commonly employed in multi-frame image restoration tasks. Our approach is
derived by introducing a learned error metric and a latent representation of
the target image, which transforms the MAP objective to a deep feature space.
The deep reparametrization allows us to directly model the image formation
process in the latent space, and to integrate learned image priors into the
prediction. Our approach thereby leverages the advantages of deep learning,
while also benefiting from the principled multi-frame fusion provided by the
classical MAP formulation. We validate our approach through comprehensive
experiments on burst denoising and burst super-resolution datasets. Our
approach sets a new state-of-the-art for both tasks, demonstrating the
generality and effectiveness of the proposed formulation.
Related papers
- FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
We offer a novel approach to image composition, which integrates multiple input images into a single, coherent image.
We showcase the potential of utilizing the powerful generative prior inherent in large-scale pre-trained diffusion models to accomplish generic image composition.
arXiv Detail & Related papers (2024-07-06T03:35:43Z) - Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced
Spectral and Spatial Fidelity [4.425982186154401]
We propose a new deep learning-based pansharpening model that fully exploits the potential of this approach.
The proposed model features a novel loss function that jointly promotes the spectral and spatial quality of the pansharpened data.
Experiments on a large variety of test images, performed in challenging scenarios, demonstrate that the proposed method compares favorably with the state of the art.
arXiv Detail & Related papers (2023-07-26T17:25:28Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Generalized Expectation Maximization Framework for Blind Image Super
Resolution [28.108363151431877]
We propose an end-to-end learning framework for the blind SISR problem.
The proposed method integrates learning techniques into the generalized expectation-maximization (GEM) algorithm and infers HR images from the maximum likelihood estimation (MLE)
arXiv Detail & Related papers (2023-05-23T10:01:58Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - A Probabilistic Deep Image Prior for Computational Tomography [0.19573380763700707]
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty.
We construct a Bayesian prior for tomographic reconstruction, which combines the classical total variation (TV) regulariser with the modern deep image prior (DIP)
For the inference, we develop an approach based on the linearised Laplace method, which is scalable to high-dimensional settings.
arXiv Detail & Related papers (2022-02-28T14:47:14Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
We propose an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features.
A multi-scale cascaded feature refinement module then predicts the deblurred image from the deconvolved deep features.
We show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts and quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.
arXiv Detail & Related papers (2021-03-18T00:38:11Z) - Interpretable Deep Multimodal Image Super-Resolution [23.48305854574444]
Multimodal image super-resolution (SR) is the reconstruction of a high resolution image given a low-resolution observation with the aid of another image modality.
We present a multimodal deep network design that integrates coupled sparse priors and allows the effective fusion of information from another modality into the reconstruction process.
arXiv Detail & Related papers (2020-09-07T14:08:35Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output.
We propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture.
Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information.
arXiv Detail & Related papers (2020-01-21T14:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.