Path sampling of recurrent neural networks by incorporating known
physics
- URL: http://arxiv.org/abs/2203.00597v1
- Date: Tue, 1 Mar 2022 16:35:50 GMT
- Title: Path sampling of recurrent neural networks by incorporating known
physics
- Authors: Sun-Ting Tsai, Eric Fields, Pratyush Tiwary
- Abstract summary: We show a path sampling approach that allows us to include generic thermodynamic or kinetic constraints into recurrent neural networks.
We show the method here for a widely used type of recurrent neural network known as long short-term memory network.
Our method can be easily generalized to other generative artificial intelligence models and to generic time series in different areas of physical and social sciences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recurrent neural networks have seen widespread use in modeling dynamical
systems in varied domains such as weather prediction, text prediction and
several others. Often one wishes to supplement the experimentally observed
dynamics with prior knowledge or intuition about the system. While the
recurrent nature of these networks allows them to model arbitrarily long
memories in the time series used in training, it makes it harder to impose
prior knowledge or intuition through generic constraints. In this work, we
present a path sampling approach based on principle of Maximum Caliber that
allows us to include generic thermodynamic or kinetic constraints into
recurrent neural networks. We show the method here for a widely used type of
recurrent neural network known as long short-term memory network in the context
of supplementing time series collecting from all-atom molecular dynamics. We
demonstrate the power of the formalism for different applications. Our method
can be easily generalized to other generative artificial intelligence models
and to generic time series in different areas of physical and social sciences,
where one wishes to supplement limited data with intuition or theory based
corrections.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Introduction to dynamical mean-field theory of generic random neural
networks [2.0711789781518752]
It is not easy for beginners to access the essence of this tool and the underlying physics.
We give a pedagogical introduction of this method in a particular example of generic random neural networks.
The numerical implementation of solving the integro-differential mean-field equations is also detailed.
arXiv Detail & Related papers (2023-05-15T09:01:40Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Understanding and mitigating gradient pathologies in physics-informed
neural networks [2.1485350418225244]
This work focuses on the effectiveness of physics-informed neural networks in predicting outcomes of physical systems and discovering hidden physics from noisy data.
We present a learning rate annealing algorithm that utilizes gradient statistics during model training to balance the interplay between different terms in composite loss functions.
We also propose a novel neural network architecture that is more resilient to such gradient pathologies.
arXiv Detail & Related papers (2020-01-13T21:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.