Stretched and measured neural predictions of complex network dynamics
- URL: http://arxiv.org/abs/2301.04900v4
- Date: Wed, 24 Apr 2024 19:21:05 GMT
- Title: Stretched and measured neural predictions of complex network dynamics
- Authors: Vaiva Vasiliauskaite, Nino Antulov-Fantulin,
- Abstract summary: Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
- Score: 2.1024950052120417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential equations are a ubiquitous tool to study dynamics, ranging from physical systems to complex systems, where a large number of agents interact through a graph with non-trivial topological features. Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems, especially in complex systems that lack explicit first principles. A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations. Specifically for the latter task, however, deploying deep learning models in unfamiliar settings - such as predicting dynamics in unobserved state space regions or on novel graphs - can lead to spurious results. Focusing on complex systems whose dynamics are described with a system of first-order differential equations coupled through a graph, we show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible. However, achieving this advanced level of generalization requires neural network models to conform to fundamental assumptions about the dynamical model. Additionally, we propose a statistical significance test to assess prediction quality during inference, enabling the identification of a neural network's confidence level in its predictions.
Related papers
- CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODE is the first semi-supervised approach to modeling dynamical systems with NODE.
We show significant performance improvements over a baseline Neural ODE model on multiple dynamical system modeling tasks.
arXiv Detail & Related papers (2023-10-19T19:17:12Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Physics-based polynomial neural networks for one-shot learning of
dynamical systems from one or a few samples [0.0]
The paper describes practical results on both a simple pendulum and one of the largest worldwide X-ray source.
It is demonstrated in practice that the proposed approach allows recovering complex physics from noisy, limited, and partial observations.
arXiv Detail & Related papers (2020-05-24T09:27:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.