Beyond Ans\"atze: Learning Quantum Circuits as Unitary Operators
- URL: http://arxiv.org/abs/2203.00601v2
- Date: Thu, 3 Mar 2022 17:32:10 GMT
- Title: Beyond Ans\"atze: Learning Quantum Circuits as Unitary Operators
- Authors: B\'alint M\'at\'e, Bertrand Le Saux, Maxwell Henderson
- Abstract summary: We run gradient-based optimization in the Lie algebra $mathfrak u(2N)$.
We argue that $U(2N)$ is not only more general than the search space induced by ansatz, but in ways easier to work with on classical computers.
- Score: 30.5744362478158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the advantages of optimizing quantum circuits on $N$
wires as operators in the unitary group $U(2^N)$. We run gradient-based
optimization in the Lie algebra $\mathfrak u(2^N)$ and use the exponential map
to parametrize unitary matrices. We argue that $U(2^N)$ is not only more
general than the search space induced by an ansatz, but in ways easier to work
with on classical computers. The resulting approach is quick, ansatz-free and
provides an upper bound on performance over all ans\"atze on $N$ wires.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss [16.91814406135565]
We conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of $N$ convex, Lipschitz functions.
We prove that quantum algorithms must take $tildeOmega(sqrtNepsilon-2/3)$ queries to a first order quantum oracle.
arXiv Detail & Related papers (2024-02-20T06:23:36Z) - Fast and Practical Quantum-Inspired Classical Algorithms for Solving
Linear Systems [11.929584800629673]
We propose fast and practical quantum-inspired classical algorithms for solving linear systems.
Our main contribution is the application of the heavy ball momentum method to quantum-inspired classical algorithms for solving linear systems.
arXiv Detail & Related papers (2023-07-13T08:46:19Z) - Quantum machine learning with subspace states [8.22379888383833]
We introduce a new approach for quantum linear algebra based on quantum subspace states and present three new quantum machine learning algorithms.
The first is a quantum sampling algorithm that samples from the distribution $Pr[S]= det(X_SX_ST)$ for $|S|=d$ using $O(nd)$ gates and with circuit depth $O(dlog n)$.
The second is a quantum singular value estimation algorithm for compound matrices $mathcalAk$, the speedup for this algorithm is potentially exponential.
arXiv Detail & Related papers (2022-01-31T19:34:47Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation and quantum machine learning, yet its circuit depth and size complexity remain open when ancillary qubits are available.
In this paper, we study efficient constructions of quantum circuits with $m$ ancillary qubits that can prepare $psi_vrangle$ in depth.
Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the ancillary qubits tightly and the depths are optimal in a wide range of parameter regime.
arXiv Detail & Related papers (2021-08-13T09:47:11Z) - Bayesian Optimistic Optimisation with Exponentially Decaying Regret [58.02542541410322]
The current practical BO algorithms have regret bounds ranging from $mathcalO(fraclogNsqrtN)$ to $mathcal O(e-sqrtN)$, where $N$ is the number of evaluations.
This paper explores the possibility of improving the regret bound in the noiseless setting by intertwining concepts from BO and tree-based optimistic optimisation.
We propose the BOO algorithm, a first practical approach which can achieve an exponential regret bound with order $mathcal O(N-sqrt
arXiv Detail & Related papers (2021-05-10T13:07:44Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Quantum-classical algorithms for skewed linear systems with optimized
Hadamard test [10.386115383285288]
We discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases.
Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-logarithmic depth.
We present an algorithm for the special case of a factorized linear system with run time poly-logarithmic in the respective dimensions.
arXiv Detail & Related papers (2020-09-28T12:59:27Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
We find an algorithm which finds.
epsilon$-approximate stationary point (with $|nabla F(x)|le epsilon$) using.
$(epsilon,gamma)$surimate random random points.
Our lower bounds here are novel even in the noiseless case.
arXiv Detail & Related papers (2020-06-24T04:41:43Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.