Two-Level Supervised Contrastive Learning for Response Selection in
Multi-Turn Dialogue
- URL: http://arxiv.org/abs/2203.00793v1
- Date: Tue, 1 Mar 2022 23:43:36 GMT
- Title: Two-Level Supervised Contrastive Learning for Response Selection in
Multi-Turn Dialogue
- Authors: Wentao Zhang, Shuang Xu, and Haoran Huang
- Abstract summary: This paper applies contrastive learning to the problem by using the supervised contrastive loss.
We develop a new method for supervised contrastive learning, referred to as two-level supervised contrastive learning.
- Score: 18.668723854662584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selecting an appropriate response from many candidates given the utterances
in a multi-turn dialogue is the key problem for a retrieval-based dialogue
system. Existing work formalizes the task as matching between the utterances
and a candidate and uses the cross-entropy loss in learning of the model. This
paper applies contrastive learning to the problem by using the supervised
contrastive loss. In this way, the learned representations of positive examples
and representations of negative examples can be more distantly separated in the
embedding space, and the performance of matching can be enhanced. We further
develop a new method for supervised contrastive learning, referred to as
two-level supervised contrastive learning, and employ the method in response
selection in multi-turn dialogue. Our method exploits two techniques: sentence
token shuffling (STS) and sentence re-ordering (SR) for supervised contrastive
learning. Experimental results on three benchmark datasets demonstrate that the
proposed method significantly outperforms the contrastive learning baseline and
the state-of-the-art methods for the task.
Related papers
- DenoSent: A Denoising Objective for Self-Supervised Sentence
Representation Learning [59.4644086610381]
We propose a novel denoising objective that inherits from another perspective, i.e., the intra-sentence perspective.
By introducing both discrete and continuous noise, we generate noisy sentences and then train our model to restore them to their original form.
Our empirical evaluations demonstrate that this approach delivers competitive results on both semantic textual similarity (STS) and a wide range of transfer tasks.
arXiv Detail & Related papers (2024-01-24T17:48:45Z) - Improve Retrieval-based Dialogue System via Syntax-Informed Attention [46.79601705850277]
We propose SIA, Syntax-Informed Attention, considering both intra- and inter-sentence syntax information.
We evaluate our method on three widely used benchmarks and experimental results demonstrate the general superiority of our method on dialogue response selection.
arXiv Detail & Related papers (2023-03-12T08:14:16Z) - Multi-Stage Coarse-to-Fine Contrastive Learning for Conversation Intent
Induction [34.25242109800481]
This paper presents our solution to Track 2 of Intent Induction from Conversations for Task-Oriented Dialogue at the Eleventh Dialogue System Technology Challenge (DSTC11)
The essence of intention clustering lies in distinguishing the representation of different dialogue utterances.
In the released DSTC11 evaluation results, our proposed system ranked first on both of the two subtasks of this Track.
arXiv Detail & Related papers (2023-03-09T04:51:27Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
We introduce contrastive learning and multi-task learning to jointly model the problem.
Our proposed model achieves state-of-the-art performance on several public datasets.
arXiv Detail & Related papers (2022-03-22T10:13:27Z) - Towards Robust Online Dialogue Response Generation [62.99904593650087]
We argue that this can be caused by a discrepancy between training and real-world testing.
We propose a hierarchical sampling-based method consisting of both utterance-level sampling and semi-utterance-level sampling.
arXiv Detail & Related papers (2022-03-07T06:51:41Z) - Small Changes Make Big Differences: Improving Multi-turn Response
Selection \\in Dialogue Systems via Fine-Grained Contrastive Learning [27.914380392295815]
Retrieve-based dialogue response selection aims to find a proper response from a candidate set given a multi-turn context.
We propose a novel textbfFine-textbfGrained textbfContrastive (FGC) learning method for the response selection task based on PLMs.
arXiv Detail & Related papers (2021-11-19T11:07:07Z) - Dialogue Response Selection with Hierarchical Curriculum Learning [52.3318584971562]
We study the learning of a matching model for dialogue response selection.
Motivated by the recent finding that random negatives are often too trivial to train a reliable model, we propose a hierarchical curriculum learning framework.
arXiv Detail & Related papers (2020-12-29T14:06:41Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.